Answer:
[tex]524.31\ \text{mi/h}[/tex]
[tex]0.761[/tex]
Explanation:
[tex]p_0[/tex] = Stagnation pressure = 52.2 kPa
[tex]p[/tex] = Atmospheric pressure at 8000 m = 35.581 kPa (from chart)
M = Mach number
[tex]v_s[/tex] = Velocity of sound at 8000 m = 308 m/s
v = Velocity of airplane
We have the following equation
[tex]\dfrac{p_0}{p}=(1+0.2M^2)^{3.5}\\\Rightarrow M=\sqrt{\dfrac{1}{0.2}[(\dfrac{p_0}{p})^{\frac{1}{3.5}}-1]}\\\Rightarrow M=\sqrt{\dfrac{1}{0.2}[(\dfrac{52.2}{35.581})^{\frac{1}{3.5}}-1]}\\\Rightarrow M=0.761[/tex]
Mach number is given by
[tex]M=\dfrac{v}{v_s}\\\Rightarrow v=Mv_s\\\Rightarrow v=0.761\times 308\\\Rightarrow v=234.388\ \text{m/s}\times \dfrac{3600}{1609.34}=524.31\ \text{mi/h}[/tex]
The velocity of the airplance is [tex]524.31\ \text{mi/h}[/tex] and has a mach number of [tex]0.761[/tex].