An asteroid orbits the Sun every 176 years. What is the asteroids average distance from the Sun? P ^ 2 = a ^ 3 where p = period in years and average orbital distance in AU 233 years 1.46 AU 5.45 years 3.09 years

Respuesta :

Answer:

The value is  [tex]x = 45.99 \ Au[/tex]

Explanation:

From the question we are told that

   The period of the  asteroid is   [tex]T = 176 \ years = 176 * 365 * 24 * 60* 60 = 5.55*10^{9}\ s[/tex]

Generally the average distance of the asteroid from the sun is mathematically represented as

            [tex]R = \sqrt[3]{ \frac{G M * T^2 }{4 \pi} }[/tex]

Here M is the mass of the sun with a value  

        [tex]M = 1.99*10^{30} \ kg[/tex]

         G  is the gravitational constant with value  [tex]G = 6.67 *10^{-11} \ m^3 \cdot kg^{-1} \cdot s^{-2}[/tex]

           [tex]R = \sqrt[3]{ \frac{6.67 *10^{-11} * 1.99*10^{30} * [5.55 *10^{9}]^2 }{4 * 3.142 } }[/tex]

=>       [tex]R = 6.88 *10^{12} \ m[/tex]

Generally

         [tex]1.496* 10^{11} \ m \to 1 Au (Astronomical \ unit )[/tex]

So

          [tex]R = 6.88 *10^{12} \ m \ \ \ \ \to \ \ x \ Au[/tex]

=>      [tex]x = \frac{6.88 *10^{12}}{1.496 *10^{11}}[/tex]

=>       [tex]x = 45.99 \ Au[/tex]

       

ACCESS MORE