Enter the ordered pair for the vertices for T(3, –2)(QRST).

Given:
The figure QRST.
The rule of translation is [tex]T_{(3,-2)}(QRST)[/tex].
To find:
The coordinate of vertices after translation.
Solution:
According to the given rule of translation is [tex]T_{(3,-2)}(QRST)[/tex], we get
[tex](x,y)\to (x+3,y-2)[/tex]
From the given figure it is clear that the vertices of QRST are Q(1,3), R(3,-3), S(0,-2) and T(-2,1).
Using the above rule, we get
[tex]Q(1,3)\to Q'(1+3,3-2)=Q'(4,1)[/tex]
[tex]R(3,-3)\to R'(3+3,-3-2)=R'(6,-5)[/tex]
[tex]S(0,-2)\to S'(0+3,-2-2)=S'(3,-4)[/tex]
[tex]T(-2,1)\to T'(-2+3,1-2)=T'(1,-1)[/tex]
Therefore, the coordinates of the vertices after translation are Q'(4,1), R'(6,-5), S'(3,-4) and T'(1,-1).
The ordered pairs for the vertices of T(3, –2)(QRST) are
[tex]\mathbf{Q' = (4,1)}[/tex] [tex]\mathbf{R' = (6,-5)}[/tex] [tex]\mathbf{S' = (3,-4)}[/tex] and [tex]\mathbf{T' = (1, -1)}[/tex]
The coordinates of QRST are:
[tex]\mathbf{Q = (1,3)}[/tex]
[tex]\mathbf{R = (3,-3)}[/tex]
[tex]\mathbf{S = (0,-2)}[/tex]
[tex]\mathbf{T = (-2,1)}[/tex]
The transformation rule of [tex]\mathbf{T(3,-2)}[/tex] is:
[tex]\mathbf{(x,y) \to (x + 3,y -2)}[/tex]
So, we have:
[tex]\mathbf{Q' = (1 + 3,3 -2)}[/tex]
[tex]\mathbf{Q' = (4,1)}[/tex]
[tex]\mathbf{R' = (3 + 3,-3 -2)}[/tex]
[tex]\mathbf{R' = (6,-5)}[/tex]
[tex]\mathbf{S' = (0 + 3,-2 -2)}[/tex]
[tex]\mathbf{S' = (3,-4)}[/tex]
[tex]\mathbf{T' = (-2 + 3,1 -2)}[/tex]
[tex]\mathbf{T' = (1, -1)}[/tex]
Hence, the ordered pairs for the vertices of T(3, –2)(QRST) are
[tex]\mathbf{Q' = (4,1)}[/tex] [tex]\mathbf{R' = (6,-5)}[/tex] [tex]\mathbf{S' = (3,-4)}[/tex] and [tex]\mathbf{T' = (1, -1)}[/tex]
Read more about transformation at:
https://brainly.com/question/13801312