Respuesta :
Answer:
c
Step-by-step explanation:
with the knowledge that we are comparing the x position we can get the equation |x_1-x_2|=4, then just do the maths
(4,2) (8,2) points are separated by a distance of 4 units.
What is distance formula?
The 2D distance formula gives the shortest distance between two points in a two-dimensional plane.
Distance Formula = [tex]\sqrt{(x_{2} -x_{1} )^{2} +(y_{2}-y_{1} )^{2} }[/tex]
Given
Distance of 4 units
Option A:
[tex](x_{1} ,y_{1})=(7,7)[/tex]
[tex](x_{2} ,y_{2})=(1,7)[/tex]
Distance = [tex]\sqrt{(x_{2} -x_{1} )^{2} +(y_{2}-y_{1} )^{2} }[/tex]
= [tex]\sqrt{(1-7)^{2}+(7-7)^{2} } =6[/tex]
Option B:
[tex](x_{1} ,y_{1})=(3,3)[/tex]
[tex](x_{2} ,y_{2})=(1,3)[/tex]
Distance = [tex]\sqrt{(x_{2} -x_{1} )^{2} +(y_{2}-y_{1} )^{2} }[/tex]
= [tex]\sqrt{(1-3)^{2}+(3-3)^{2} } =2[/tex]
Option C:
[tex](x_{1} ,y_{1})=(4,2)[/tex]
[tex](x_{2} ,y_{2})=(8,2)[/tex]
Distance = [tex]\sqrt{(x_{2} -x_{1} )^{2} +(y_{2}-y_{1} )^{2} }[/tex]
= [tex]\sqrt{(8-4)^{2}+(2-2)^{2} } =4[/tex]
Option C is correct.
Option D:
[tex](x_{1} ,y_{1})=(2,4)[/tex]
[tex](x_{2} ,y_{2})=(5,4)[/tex]
Distance = [tex]\sqrt{(x_{2} -x_{1} )^{2} +(y_{2}-y_{1} )^{2} }[/tex]
= [tex]\sqrt{(5-2)^{2}+(4-4)^{2} } =3[/tex]
Hence, (4,2) (8,2) points are separated by a distance of 4 units.
Find out more information about distance formula here
https://brainly.com/question/15958176
#SPJ3