Respuesta :
The coordinate of F is (3, 3).
Given
Three vertices of parallelogram DEFG are D(0, 2), E(-1, 5), and G (4, 0).
What is the formula to find the midpoints?
Diagonals of a parallelogram bisect each other, meaning they divide each other into equal parts.
The formula is used to find the midpoints are as follows;
[tex]\rm \dfrac{x_1+x_2}{2} , \ \dfrac{y_1+y_2}{2}[/tex]
Let (x, y) = coordinates of vertex F.
DF and EG are diagonals of parallelogram DEFG, therefore:
The midpoint of DF = midpoint of EG
Then,
The midpoint of D(0, 2) and F(x, y) is;
[tex]\rm \dfrac{x_1+x_2}{2} , \ \dfrac{y_1+y_2}{2}\\\\\dfrac{0+x}{2}, \ \dfrac{2+y}{2}[/tex]
The midpoint of E(-1, 5) and G(4, 0) is;
[tex]\rm \dfrac{x_1+x_2}{2} , \ \dfrac{y_1+y_2}{2}\\\\\rm \dfrac{-1+4}{2} , \ \dfrac{5+0}{2}\\\\\dfrac{3}{2}, \dfrac{5}{2}[/tex]
Comparing the equation;
[tex]\rm \dfrac{0+x}{2} = \dfrac{3}{2}\\\\\dfrac{x}{2} = \dfrac{3}{2}\\\\x=3[/tex]
[tex]\rm \dfrac{2+y}{2} =\dfrac{5}{2}\\\\2+y =5\\\\y = 5-2\\\\y =3[/tex]
Hence, the coordinate of F is (3, 3).
To know more about Midpoints click the link given below.
https://brainly.com/question/2994861