Determine the settings of KP, TI and TD required for a three-mode controller which gave a process reaction curve with a lag L of 200 s and a gradient R of 0.010%/s when the test signal was a 5% change in the control valve position.

Respuesta :

Answer:

[tex]\mathbf{K_p =2.857}[/tex]

[tex]\mathbf{\tau_1= 400 \ s}[/tex]

[tex]\mathbf{ \tau_d = 100 \ s}[/tex]

Explanation:

We can determine each parameter by using the first method of Zeigler Nichols

[tex]K_p = 1.2 \times \dfrac{\tau}{KL}[/tex]

[tex]\tau_1= 2L[/tex]

[tex]\tau_d = 0.5 L[/tex]

For this process;

the initial state of the output = [tex]A_o[/tex]

[tex]\tau = constant[/tex]

For calculating the gradient, we use the equation:

[tex]y-y_o = G(t-t_o) \\ \\ y-A_o = 0.01 \% A_o (t-L)[/tex]

where.

Time constant relates to the time [tex]y = K = 1.05 A_o[/tex]

[tex]1.05A_o -A_o = 0.01\% A_o (t-200)[/tex]

[tex]0.05 A_o = 0.0001 A_o (t-200)[/tex]

[tex]t = 500A_o + 200[/tex]

To find time t

[tex]\tau = (500A_o +200) -200[/tex]

[tex]\tau = 500 \ A_o[/tex]

Recall that:

Using the first method of Zeigler Nichols

[tex]K_p = 1.2 \times \dfrac{\tau}{KL}[/tex]

[tex]\tau_1= 2L[/tex]

[tex]\tau_d = 0.5 L[/tex]

[tex]K_p = 1.2 \times \dfrac{500 \ A_o}{1.05\ A_o \times 200}[/tex]

[tex]K_p = 1.2 \times 2.38095[/tex]

[tex]\mathbf{K_p =2.857}[/tex]

[tex]\tau_1= 2L[/tex]

[tex]\tau_1= 2(200)[/tex]

[tex]\mathbf{\tau_1= 400 \ s}[/tex]

[tex]\tau_d = 0.5 \ L[/tex]

[tex]\tau_d = 0.5 \times 200[/tex]

[tex]\mathbf{ \tau_d = 100 \ s}[/tex]

ACCESS MORE
EDU ACCESS