Given:
The equation of circle is
[tex](x+3)^2+y^2=9[/tex]
To find:
The polar form of given circle.
Solution:
We have,
[tex](x+3)^2+y^2=9[/tex]
[tex]x^2+2(x)(3)+(3)^2+y^2=9[/tex] [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]
[tex](x^2+y^2)+6x+9=9[/tex]
Subtracting 9 from both sides, we get
[tex](x^2+y^2)+6x=0[/tex]
We know that, [tex]x^2+y^2=r^2[/tex] and [tex]x=r\cos \theta[/tex].
[tex]r^2+6(r\cos \theta)=0[/tex]
[tex]r(r+6\cos \theta)=0[/tex]
[tex]r=0[/tex] and [tex]r+6\cos \theta=0[/tex]
We know that, r is radius it cannot be 0. So,
[tex]r+6\cos \theta=0[/tex]
[tex]r=-6\cos \theta[/tex]
Therefore, the correct option is A.