NEED HELP ASAP, WILL GIVE BRAINLIEST

What is the polar form of (x + 3)2 + y2 = 9?
r = −6 cos(θ)
r = −3 cos(θ)
r = 3 cos(θ)
r = 6 cos(θ)​

Respuesta :

Given:

The equation of circle is

[tex](x+3)^2+y^2=9[/tex]

To find:

The polar form of given circle.

Solution:

We have,

[tex](x+3)^2+y^2=9[/tex]

[tex]x^2+2(x)(3)+(3)^2+y^2=9[/tex]        [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]

[tex](x^2+y^2)+6x+9=9[/tex]

Subtracting 9 from both sides, we get

[tex](x^2+y^2)+6x=0[/tex]

We know that, [tex]x^2+y^2=r^2[/tex] and [tex]x=r\cos \theta[/tex].

[tex]r^2+6(r\cos \theta)=0[/tex]

[tex]r(r+6\cos \theta)=0[/tex]

[tex]r=0[/tex] and [tex]r+6\cos \theta=0[/tex]

We know that, r is radius it cannot be 0. So,

[tex]r+6\cos \theta=0[/tex]

[tex]r=-6\cos \theta[/tex]

Therefore, the correct option is A.

ACCESS MORE