Answer:
[tex]P(x\ and\ y) = 0.15[/tex]
[tex]P(x\ or\ y) = 0.75[/tex]
Explanation:
Given
[tex]P(x) = 0.5[/tex]
[tex]P(y) = 0.4[/tex]
[tex]P(y|x) = 0.3[/tex]
Solving (a): [tex]P(x\ and\ y)[/tex]
In probability, this is calculated as:
[tex]P(x\ and\ y) = P(x) * P(y|x)[/tex]
This gives:
[tex]P(x\ and\ y) = 0.5 * 0.3[/tex]
[tex]P(x\ and\ y) = 0.15[/tex]
Solving (b): [tex]P(x\ or\ y)[/tex]
In probability, this is calculated as:
[tex]P(x\ or\ y) = P(x) + P(y) - P(x\ and\ y)[/tex]
This gives:
[tex]P(x\ or\ y) = 0.5 + 0.4 - 0.15[/tex]
[tex]P(x\ or\ y) = 0.75[/tex]