Respuesta :

Space

Answer:

[tex]\int {\frac{x^2}{x^2+x+3} } \, dx = - \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} ) - \frac{1}{2}ln|x^2+x+3| +x + C[/tex]

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Completing the Square
  • Rearranging Variables

Algebra II

  • Long Division

Calculus

  • U-Substitution
  • [Integration Trick 1] Numerator Split
  • [Integration Trick 2] Completing the Square
  • Integration Rule 1: [tex]\int {cf(x)} \, dx = c\int {f(x)} \, dx[/tex]
  • Integration Rule 2: [tex]\int {f(x)+g(x)} \, dx =\int {f(x)} \, dx + \int {g(x)} \, dx[/tex]
  • Integration 1: [tex]\int {\frac{1}{u} } \, du =ln|u| + C[/tex]
  • Integration 2: [tex]\int {\frac{du}{u^2+a^2} } = \frac{1}{a} arctan(\frac{u}{a} )+C[/tex]
  • Integration 3: [tex]\int {x^n} \, dx = \frac{x^{n+1}}{n+1} +C[/tex]

Step-by-step explanation:

Step 1: Define

[tex]\int {\frac{x^2}{x^2+x+3} } \, dx[/tex]

Step 2: Simplify Function

We do long division to simplify the function inside the function.

See Attachment for Long Division Work.

Once we do long division, our function becomes [tex]1-\frac{x+3}{x^2+x+3}[/tex]

Now we rewrite our Integral: [tex]\int ({1-\frac{x+3}{x^2+x+3} }) \, dx[/tex]

Step 3: Integrate Pt. 1

  1. Distributive Integral [Int Rule 1]:                    [tex]\int {1} \, dx - \int {\frac{x+3}{x^2+x+3} } \, dx[/tex]
  2. Integrate 1st Integral [Int 3]:                          [tex]x - \int {\frac{x+3}{x^2+x+3} } \, dx[/tex]

Step 4: Identify Variables Pt.1

Set variables for u-substitution.

u = x² + x + 3

du = (2x + 1)dx

Step 5: Integrate Pt. 2

  1. Rewrite Integral [Int Rule 1]:                                                                [tex]x - \frac{1}{2} \int {\frac{2(x+3)}{x^2+x+3} } \, dx[/tex]
  2. Distribute 2 [Alg]:                                                                             [tex]x - \frac{1}{2} \int {\frac{2x+6}{x^2+x+3} } \, dx[/tex]
  3. Rewrite Integral [Alg]:                                                                      [tex]x - \frac{1}{2} \int {\frac{2x+1+5}{x^2+x+3} } \, dx[/tex]
  4. Rewrite Integral [Int Trick 1]:                                       [tex]x - \frac{1}{2} [\int {\frac{2x+1}{x^2+x+3} } \, dx + \int {\frac{5}{x^2+x+3} } \, dx ][/tex]
  5. (2nd Int) Complete the Square:                              [tex]x - \frac{1}{2} [\int {\frac{2x+1}{x^2+x+3} } \, dx + \int {\frac{5}{(x+\frac{1}{2})^2 + \frac{11}{4} } } \, dx ][/tex]

Step 6: Identify Variables Pt. 2

Set variables for u-substitution for 2nd integral.

z = x + 1/2

dz = dx

a = √(11/4)

Step 7: Integrate Pt. 3

  1. [Integrate] U-Substitution:                                 [tex]x - \frac{1}{2} [\int {\frac{1}{u} } \, du + \int {\frac{5}{z^2 + (\sqrt{\frac{11}{4}})^2} } \, dz ][/tex]
  2. Rewrite Integral [Int Rule 1]:                                     [tex]x - \frac{1}{2} [\int {\frac{1}{u} } \, du + 5\int {\frac{dz}{z^2 + (\sqrt{\frac{11}{4}})^2} } ][/tex]
  3. Integrate 1st Integral [Int 1]:                                       [tex]x - \frac{1}{2} [ln|u| + 5\int {\frac{dz}{z^2 + (\sqrt{\frac{11}{4}})^2} } ][/tex]
  4. Integrate 2nd Integral [Int 2]:                            [tex]x - \frac{1}{2} [ln|u| + 5(\frac{1}{\sqrt{\frac{11}{4}}}arctan(\frac{z}{\sqrt{\frac{11}{4} } } ) ) ][/tex]
  5. Distribute 5 [Alg]:                                                 [tex]x - \frac{1}{2} [ln|u| + \frac{5}{\sqrt{\frac{11}{4}}}arctan(\frac{z}{\sqrt{\frac{11}{4} } } ) ][/tex]
  6. Distribute -1/2 [Alg]:                                           [tex]x - \frac{1}{2}ln|u| - \frac{5}{2\sqrt{\frac{11}{4}}}arctan(\frac{z}{\sqrt{\frac{11}{4} } } )[/tex]
  7. Rationalize [Alg]:                                                   [tex]x - \frac{1}{2}ln|u| - \frac{5\sqrt{11} }{11}arctan(\frac{z}{\sqrt{\frac{11}{4} } } )[/tex]
  8. Resubstitute variables [Alg]:                              [tex]x - \frac{1}{2}ln|x^2+x+3| - \frac{5\sqrt{11} }{11}arctan(\frac{x+\frac{1}{2} }{\sqrt{\frac{11}{4} } } )[/tex]
  9. Simplify/Rationalize [Alg]:                     [tex]x - \frac{1}{2}ln|x^2+x+3| - \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} )[/tex]
  10. Rewrite [Alg]:                                [tex]- \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} ) - \frac{1}{2}ln|x^2+x+3| +x[/tex]
  11. Integration Constant:                            [tex]- \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} ) - \frac{1}{2}ln|x^2+x+3| +x + C[/tex]

And we have our final answer! Hope this helped you on your Calculus Journey!

Ver imagen Space

hope this will help you........

Ver imagen manissaha129
ACCESS MORE