Respuesta :
"f(x) = 5(4)x" is the one equation among the following choices given in the question that represents an exponential function that passes through the point (2, 80). The correct option among all the options that are given in the question is the fourth option or option "D". I hope that the answer has come to your help.
we know that
If the point belongs to the graph, then the point must satisfy the equation
we will proceed to verify each case
case A.) [tex]f(x)=4(x^{5})[/tex]
The point is [tex](2,80)[/tex]
Verify if the point satisfy the equation
For [tex]x=2[/tex] find the value of y in the equation and compare with the y-coordinate of the point
[tex]f(2)=4(2^{5})[/tex]
[tex]f(2)=128[/tex]
[tex]128\neq 80[/tex]
therefore
the equation [tex]f(x)=4(x^{5})[/tex] not passes through the point [tex](2,80)[/tex]
case B.) [tex]f(x)=5(x^{4})[/tex]
The point is [tex](2,80)[/tex]
Verify if the point satisfy the equation
For [tex]x=2[/tex] find the value of y in the equation and compare with the y-coordinate of the point
[tex]f(2)=5(2^{4})[/tex]
[tex]f(2)=80[/tex]
[tex]80=80[/tex]
therefore
the equation [tex]f(x)=5(x^{4})[/tex] passes through the point [tex](2,80)[/tex]
case C.) [tex]f(x)=4(5^{x})[/tex]
The point is [tex](2,80)[/tex]
Verify if the point satisfy the equation
For [tex]x=2[/tex] find the value of y in the equation and compare with the y-coordinate of the point
[tex]f(2)=4(5^{2})[/tex]
[tex]f(2)=100[/tex]
[tex]100\neq 80[/tex]
therefore
the equation [tex]f(x)=4(5^{x})[/tex] not passes through the point [tex](2,80)[/tex]
case D.) [tex]f(x)=5(4^{x})[/tex]
The point is [tex](2,80)[/tex]
Verify if the point satisfy the equation
For [tex]x=2[/tex] find the value of y in the equation and compare with the y-coordinate of the point
[tex]f(2)=5(4^{2})[/tex]
[tex]f(2)=80[/tex]
[tex]80=80[/tex]
therefore
the equation [tex]f(x)=5(4^{x})[/tex] passes through the point [tex](2,80)[/tex]
therefore
the answer is
[tex]f(x)=5(x^{4})[/tex]
[tex]f(x)=5(4^{x})[/tex]