Answer:
[tex]p = 19.18[/tex]
Step-by-step explanation:
This question is illustrated using the attachment and will be solved using cosine formula
[tex]a^2 = b^2 + c^2 - 2bcCosA[/tex]
Let the strawberry side be s, the Green beans be b and the pumpkins be p.
The cosine formula in this case is:
[tex]g^2 = s^2 + p^2 - 2spCosG[/tex]
Where
[tex]s = 10[/tex]
[tex]g = 18[/tex]
[tex]<G =68[/tex]
The equation becomes
[tex]18^2 = 10^2 + p^2 - 2 * 10 * p * Cos\ 68[/tex]
[tex]324 = 100 + p^2 - 20 * p * 0.375[/tex]
[tex]324 = 100 + p^2 - 7.5p[/tex]
Collect Like Terms
[tex]p^2 - 7.5p + 100 - 324 = 0[/tex]
[tex]p^2 - 7.5p - 224 = 0[/tex]
Using quadratic formula:
[tex]p = \frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]
Where
[tex]a = 1[/tex]
[tex]b = -7.5[/tex]
[tex]c = -224[/tex]
[tex]p = \frac{-(-7.5)\±\sqrt{(-7.5)^2-4*1*-224}}{2*1}[/tex]
[tex]p = \frac{7.5\±\sqrt{56.25+896}}{2}[/tex]
[tex]p = \frac{7.5\±\sqrt{952.25}}{2}[/tex]
[tex]p = \frac{7.5\± 30.86}{2}[/tex]
[tex]p = \frac{7.5 + 30.86}{2}[/tex] or [tex]p = \frac{7.5 - 30.86}{2}[/tex]
[tex]p = \frac{38.36}{2}[/tex] or [tex]p = \frac{-23.36}{2}[/tex]
[tex]p = 19.18[/tex] or [tex]p = -11.68[/tex]
But length can not be negative.
So:
[tex]p = 19.18[/tex]