Three lines of crops in a garden form a triangular shape. Strawberries are planted in a 10 ft line and green beans are planted in an 18 ft line. If the third side, a line of pumpkins, makes an 68 degree angle with the strawberries, determine the length of the pumpkins.

Respuesta :

Answer:

[tex]p = 19.18[/tex]

Step-by-step explanation:

This question is illustrated using the attachment and will be solved using cosine formula

[tex]a^2 = b^2 + c^2 - 2bcCosA[/tex]

Let the strawberry side be s, the Green beans be b and the pumpkins be p.

The cosine formula in this case is:

[tex]g^2 = s^2 + p^2 - 2spCosG[/tex]

Where

[tex]s = 10[/tex]

[tex]g = 18[/tex]

[tex]<G =68[/tex]

The equation becomes

[tex]18^2 = 10^2 + p^2 - 2 * 10 * p * Cos\ 68[/tex]

[tex]324 = 100 + p^2 - 20 * p * 0.375[/tex]

[tex]324 = 100 + p^2 - 7.5p[/tex]

Collect Like Terms

[tex]p^2 - 7.5p + 100 - 324 = 0[/tex]

[tex]p^2 - 7.5p - 224 = 0[/tex]

Using quadratic formula:

[tex]p = \frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

Where

[tex]a = 1[/tex]

[tex]b = -7.5[/tex]

[tex]c = -224[/tex]

[tex]p = \frac{-(-7.5)\±\sqrt{(-7.5)^2-4*1*-224}}{2*1}[/tex]

[tex]p = \frac{7.5\±\sqrt{56.25+896}}{2}[/tex]

[tex]p = \frac{7.5\±\sqrt{952.25}}{2}[/tex]

[tex]p = \frac{7.5\± 30.86}{2}[/tex]

[tex]p = \frac{7.5 + 30.86}{2}[/tex] or [tex]p = \frac{7.5 - 30.86}{2}[/tex]

[tex]p = \frac{38.36}{2}[/tex] or [tex]p = \frac{-23.36}{2}[/tex]

[tex]p = 19.18[/tex] or [tex]p = -11.68[/tex]

But length can not be negative.

So:

[tex]p = 19.18[/tex]

Ver imagen MrRoyal