Respuesta :
Given:
The vertices of a polygon are A (−1, 1), B (4, 1), C (4,−2), and D(−1,−2).
To find:
The perimeter of ABCD.
Solution:
Distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using distance formula, we get
[tex]AB=\sqrt{(4-(-1))^2+(1-1)^2}[/tex]
[tex]AB=\sqrt{(4+1)^2+(0)^2}[/tex]
[tex]AB=\sqrt{(5)^2}[/tex]
[tex]AB=5[/tex]
Similarly,
[tex]BC=\sqrt{(4-4)^2+(-2-1)^2}=3[/tex]
[tex]CD=\sqrt{(-1-4)^2+(-2-(-2))^2}=5[/tex]
[tex]AD=\sqrt{(-1-(-1))^2+(-2-1)^2}=3[/tex]
Now, perimeter of ABCD is
[tex]P=AB+BC+CD+AD[/tex]
[tex]P=5+3+5+3[/tex]
[tex]P=16[/tex]
Therefore, the perimeter of ABCD is 16 units.
The perimeter of polygon ABCD is 16 units
The coordinates are given as:
[tex]\mathbf{A = (-1,1)}[/tex]
[tex]\mathbf{B = (4,1)}[/tex]
[tex]\mathbf{C = (4,-2)}[/tex]
[tex]\mathbf{D = (-1,-2)}[/tex]
Start by calculating the distance between the coordinates using the following distance formula
[tex]\mathbf{d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}[/tex]
So, we have:
[tex]\mathbf{AB = \sqrt{(-1 - 4)^2 + (1 - 1)^2} = 5}[/tex]
[tex]\mathbf{BC = \sqrt{(4 - 4)^2 + (-2 - 1)^2} = 3}[/tex]
[tex]\mathbf{CD = \sqrt{(4 - -1)^2 + (-2 - -2)^2} = 5}[/tex]
[tex]\mathbf{AD = \sqrt{( -1- -1)^2 + (-2 - 1)^2} = 3}[/tex]
The perimeter is then calculated as:
[tex]\mathbf{Perimeter = AB + BC + CD + AD}[/tex]
Substitute values for AB, BC, CD and DA
[tex]\mathbf{Perimeter = 5+ 3 + 5 + 3}[/tex]
[tex]\mathbf{Perimeter = 16}[/tex]
Hence, the perimeter of the polygon is 16 units
Read more about perimeters at:
https://brainly.com/question/3118552