Respuesta :

Options:

(12,0)     (0,12)    (3,-1)    (0,-4/3)

Answer:

(12,0) ,  (3,-1)  and (0,-4/3)

Step-by-step explanation:

Given

[tex]x - 9y = 12[/tex]

Required

Which option is true?

A coordinate point is of the form; [tex](x,y)[/tex]

So, we have to substitute the x and y values in the given equation.

A. For (12,0)

[tex]x = 12[/tex] and [tex]y = 0[/tex]

[tex]x - 9y = 12[/tex] becomes

[tex]12 - 9*0 = 12[/tex]

[tex]12 - 0 = 12[/tex]

[tex]12 = 12[/tex]

This is true

B. For (0,12)

[tex]x = 0[/tex] and [tex]y = 12[/tex]

[tex]x - 9y = 12[/tex] becomes

[tex]0 - 9*12 = 12[/tex]

[tex]- 9*12 = 12[/tex]

[tex]- 108 = 12[/tex]

This is false

C. For (3,-1)

[tex]x =3[/tex] and [tex]y = -1[/tex]

[tex]x - 9y = 12[/tex] becomes

[tex]3 - 9*-1 =12[/tex]

[tex]3 + 9 =12[/tex]

[tex]12 = 12[/tex]

This is true

D. For (0,-4/3)

[tex]x = 0[/tex] and [tex]y = -\frac{4}{3}[/tex]

[tex]x - 9y = 12[/tex] becomes

[tex]0- 9*-\frac{4}{3} = 12[/tex]

[tex]0+ 9*\frac{4}{3} = 12[/tex]

[tex]0+ 3*4 = 12[/tex]

[tex]0+12 = 12[/tex]

[tex]12 = 12[/tex]

This is true

Hence, (12,0) ,  (3,-1)  and (0,-4/3) are true values of the equation