Options:
(12,0) (0,12) (3,-1) (0,-4/3)
Answer:
(12,0) , (3,-1) and (0,-4/3)
Step-by-step explanation:
Given
[tex]x - 9y = 12[/tex]
Required
Which option is true?
A coordinate point is of the form; [tex](x,y)[/tex]
So, we have to substitute the x and y values in the given equation.
A. For (12,0)
[tex]x = 12[/tex] and [tex]y = 0[/tex]
[tex]x - 9y = 12[/tex] becomes
[tex]12 - 9*0 = 12[/tex]
[tex]12 - 0 = 12[/tex]
[tex]12 = 12[/tex]
This is true
B. For (0,12)
[tex]x = 0[/tex] and [tex]y = 12[/tex]
[tex]x - 9y = 12[/tex] becomes
[tex]0 - 9*12 = 12[/tex]
[tex]- 9*12 = 12[/tex]
[tex]- 108 = 12[/tex]
This is false
C. For (3,-1)
[tex]x =3[/tex] and [tex]y = -1[/tex]
[tex]x - 9y = 12[/tex] becomes
[tex]3 - 9*-1 =12[/tex]
[tex]3 + 9 =12[/tex]
[tex]12 = 12[/tex]
This is true
D. For (0,-4/3)
[tex]x = 0[/tex] and [tex]y = -\frac{4}{3}[/tex]
[tex]x - 9y = 12[/tex] becomes
[tex]0- 9*-\frac{4}{3} = 12[/tex]
[tex]0+ 9*\frac{4}{3} = 12[/tex]
[tex]0+ 3*4 = 12[/tex]
[tex]0+12 = 12[/tex]
[tex]12 = 12[/tex]
This is true
Hence, (12,0) , (3,-1) and (0,-4/3) are true values of the equation