Take the logarithm of both sides. The base of the logarithm doesn't matter.
[tex]4^{5x} = 3^{x-2}[/tex]
[tex]\implies \log 4^{5x} = \log 3^{x-2}[/tex]
Drop the exponents:
[tex]\implies 5x \log 4 = (x-2) \log 3[/tex]
Expand the right side:
[tex]\implies 5x \log 4 = x \log 3 - 2 \log 3[/tex]
Move the terms containing x to the left side and factor out x :
[tex]\implies 5x \log 4 - x \log 3 = - 2 \log 3[/tex]
[tex]\implies x (5 \log 4 - \log 3) = - 2 \log 3[/tex]
Solve for x by dividing boths ides by 5 log(4) - log(3) :
[tex]\implies \boxed{x = -\dfrac{ 2 \log 3 }{ 5 \log 4 - \log 3 }}[/tex]
You can stop there, or continue simplifying the solution by using properties of logarithms:
[tex]\implies x = -\dfrac{ \log 3^2 }{ \log 4^5 - \log 3 }[/tex]
[tex]\implies x = -\dfrac{ \log 9 }{ \log 1024 - \log 3 }[/tex]
[tex]\implies \boxed{x = -\dfrac{ \log 9 }{ \log \frac{1024}3 }}[/tex]
You can condense the solution further using the change-of-base identity,
[tex]\implies \boxed{x = -\log_{\frac{1024}3}9}[/tex]