Respuesta :

Answer:

Step-by-step explanation:

1). [tex]a_1=\frac{2}{5}[/tex]

  [tex]a_n=5a_{n-1}[/tex]

  Since, recursive formula for a geometric sequence is given by,

  [tex]a_n=r.a_{n-1}[/tex]

  Here, r = common ratio

  Comparing both, value of r = 5

  Explicit formula of the sequence is given by,

  [tex]a_n=a_1(r)^{n-1}[/tex]

  Therefore, explicit formula will be,

  [tex]a_n=\frac{2}{5}(5)^{n-1}[/tex]

2). Given recursive formula is,

   [tex]a_n=\frac{1}{2}(\frac{4}{3})^{n-1}[/tex]

   By comparing this formula with the standard recursive formula for geometric sequence,

   [tex]a_n=a_1(r)^{n-1}[/tex]

   [tex]a_1=\frac{1}{2}[/tex]

   [tex]r=\frac{4}{3}[/tex]

  Therefore, recursive formula for the sequence will be,

   [tex]a_1=\frac{1}{2}[/tex]

   [tex]a_n=a_{n-1}(\frac{4}{3})[/tex]

3). Let the explicit formula is,

    [tex]a_n=a_1(r)^{n-1}[/tex]

    For 2 years of investment, [tex]a_n=550000[/tex], [tex]a_1=500000[/tex] and n = 2

    550000 = [tex]500000(r)^{2-1}[/tex]

    [tex]r=\frac{550000}{500000}[/tex]

    r = 1.1

    Therefore, explicit formula will be.

    [tex]a_n=500000(1.1)^{n-1}[/tex]

    Option (3) is the answer.

4). Explicit formula for a geometric sequence is,

   [tex]a_n=a_1(r)^{n-1}[/tex]

   Here [tex]a_1[/tex] = First term

   r = common ratio

   from the given sequence,

   [tex]a_1[/tex] = 9

   r = [tex]\frac{a_2}{a_1}[/tex]

   r = [tex]\frac{6}{9}=\frac{2}{3}[/tex]

   Explicit formula will be,

   [tex]a_n=9(\frac{2}{3})^{n-1}[/tex]

5). Recursive formula of a geometric sequence is given by,

   [tex]a_1[/tex] = First term of the sequence

   [tex]a_n=a_{n-1}(r)[/tex]

   From the given sequence,

   [tex]a_1=4[/tex]

   r = [tex]\frac{-16}{4}=-4[/tex]

   Therefore, recursive formula will be,

   [tex]a_1=4[/tex]

   [tex]a_n=a_{n-1}(-4)[/tex] = [tex]-4a_{n-1}[/tex]