Respuesta :
Answer:
The value of x at this instant is 3.
Step-by-step explanation:
Let [tex]x\cdot y = 18[/tex], we get an additional equation by implicit differentiation:
[tex]x\cdot \frac{dy}{dt}+y\cdot \frac{dx}{dt} = 0[/tex] (1)
From the first equation we find that:
[tex]x = \frac{18}{y}[/tex] (2)
By applying (2) in (1), we get the resulting expression:
[tex]\frac{18}{y}\cdot \frac{dy}{dt}+y\cdot \frac{dx}{dt} = 0[/tex] (3)
[tex]y\cdot \frac{dx}{dt}=-\frac{18}{y}\cdot \frac{dy}{dt}[/tex]
[tex]\frac{dx}{dt} = -\frac{18}{y^{2}} \cdot \frac{dy}{dt}[/tex]
If we know that [tex]y = 6[/tex] and [tex]\frac{dy}{dt} = 8[/tex], then the first derivative of x in time is:
[tex]\frac{dx}{dt} = -\frac{18}{6^{2}} \cdot (8)[/tex]
[tex]\frac{dx}{dt} = -4[/tex]
From (1) we determine the value of x at this instant:
[tex]x\cdot \frac{dy}{dt} = -y\cdot \frac{dx}{dt}[/tex]
[tex]x = -y\cdot \left(\frac{\frac{dx}{dt} }{\frac{dy}{dt} } \right)[/tex]
[tex]x = -6\cdot \left(\frac{-4}{8} \right)[/tex]
[tex]x = 3[/tex]
The value of x at this instant is 3.
The value of [tex]x[/tex] at the instant when particle moves on the hyperbola [tex]xy=18[/tex] from time [tex]t\geq 0\;\rm seconds[/tex] is [tex]3[/tex].
Differentiating the given equation [tex]xy=18[/tex] with respect to the [tex]'t'[/tex] to get an addition equation by implicit differentiation,
[tex]x\dfrac{dy}{dt}+y\dfrac{dx}{dt}=0----(i)[/tex]
Also, from the given equation, we can write [tex]x=\dfrac{18}{y}[/tex]
Substitute the value of [tex]x[/tex] in the equation (i), we get
[tex]\begin{aligned}\dfrac{18}{y}\dfrac{dy}{dt}+y\dfrac{dx}{dt}&=0\\\dfrac{dx}{dt}&=-\dfrac{-18}{y^2}\dfrac{dy}{dt}\end{aligned}[/tex]
Substitute the value of [tex]y=6[/tex] and [tex]\dfrac{dy}{dt}=8[/tex] in the above equation, we get
[tex]\begin{aligned}\dfrac{dx}{dt}&=-\dfrac{-18}{y^2}\dfrac{dy}{dt}\\&=\dfrac{-18}{6^2}\times 8\\&=-4\end{aligned}[/tex]
Now, from equation (i), we can re-write the expression to evaluate the value of [tex]x[/tex] at that instant as-
[tex]x=-y\dfrac{\frac{dx}{dt}}{\frac{dy}{dt}}\\x=-6(\dfrac{-4}{8})\\x=3[/tex]
Hence, the value of [tex]x[/tex] at the instant when particle moves on the hyperbola [tex]xy=18[/tex] from time [tex]t\geq 0\;\rm seconds[/tex] is [tex]3[/tex].
Learn more about hyperbola here:
https://brainly.com/question/15697124?referrer=searchResults