Respuesta :
Answer:
a) dA/dt = 125,42 mm/min
b) dh/dt = - 1,78 mm/min
Step-by-step explanation:
The volume of the cylinder is:
V(c) = π*r²*h ( r and h radius of the base and heigh respectively )
Then the surface area is: Area of the base : π*r²
Plus lateral area : h*2*π*r
A(c) = π*r² + 2*π*r*h
With the help of differentials we obtain:
dA/dt = 2*π*r*dr/dt + 2*π*h*dr/dt + 2*π*r*dh/dt (1)
In this equation and at time t we know:
r = 18 mm dr/dt = 2 mm/min h = 8 mm dh/dt = ??
dA/dt = increasing rate of the surface area ( with respect to time)
To find dh/dt we know:
V(c) is constant, then
V(c) = π*r²*h then h = V(c) / π*r²
dh/dt = - [V(c)*2*π*r*dr/dt ] / π²*r⁴
By subtitution of V(c)
dh/dt = - [ π*r²*h *2*π*r*dr/dt ] / π²*r⁴
dh/dt = - [2*π²h*r³*dr/dt ] /π²*r⁴
dh/dt = - [2*h* dr/dt ] / r
dh/dt = - 2*8*2 / 18 mm/min
dh/dt = - 1,78 mm/min
By subtitution in equation (1)
dA/dt = 2*π*r*dr/dt + 2*π*h*dr/dt + 2*π*r*dh/dt
dA/dt = 2*π*18*2 + 2*π*8*2 + (- 2*π*18*1,78 )
dA/dt = 226,20 + 100,53 - 201,31
dA/dt = 125,42 mm/min
Following are solutions to the given points:
Formula:
Cylinder volume [tex]v = \pi r^2 h...............(i)[/tex]
[tex]\to \frac{dr}{dt} = 2 \frac{mm}{min}\\\\ \to \frac{dh}{dt} = -2 \frac{mm}{min}\\\\ \to h=8\\\\ \to r=18 \\\\[/tex]
Part A:
Calculating the circular area of the surface:
[tex]\to A=\pi r^2\\\\[/tex]
So, [tex]\frac{dA}{dt}=2 \pi r \frac{dr}{dt}.........(ii)[/tex]
Therefore
[tex]\to \frac{dA}{dt}= 2\pi \times 18 \times 2= 72 \pi \ \frac{mm^2}{min}\\\\[/tex]
Part B:
[tex]\to \frac{dh}{dt}= - 2 \frac{mm}{min}[/tex]
Learn more:
brainly.com/question/19667963