State whether the lines are parallel, perpendicular,or neither.

1) y = 6х - 3 2) y = 3x + 2 3) 8x - 2y = 3
y = - 1/6x + 7 2y = 6x - 6 x + 4y = - 1

4) 3x + 2y = 5 5) y - 5 = 6x 6) y = 3x + 9
3y + 2x = -3 y - 6x = -1 y = 1/3x - 4​

Respuesta :

Answer:

Please check the explanation.

Step-by-step explanation:

  • Two lines are parallel if their slopes are equal.
  • Two lines are perpendicular if the product of their slope is -1

We also know that the slope-intercept form of the line equation is

[tex]y=mx+b[/tex]

where m is the slope and b is the y-intercept

Given the lines

1)

  • y = 6х - 3

Comparing with y=mx+b, the slope of y = 6х - 3:

m₁=6  

  • y = - 1/6x + 7

Comparing with y=mx+b, the slope of y = - 1/6x + 7:

m₂=-1/6

As

m₁ × m₂ = -1

6 ×  - 1/6 = -1

-1 = -1

Thus, the lines y = 6х - 3 and y = - 1/6x + 7 are perpendicular.

2)

  • y = 3x + 2

Comparing with y=mx+b, the slope of y = 3x + 2:

m₁=3  

  • 2y = 6x - 6

simplifying to write in slope-intercept form

y=3x-3

Comparing with y=mx+b, the slope of y=3x-3:

m₂=3

As the slopes of y = 3x + 2 and 2y = 6x - 6 are equal.

i.e. m₁ = m₂ → 3 = 3

Thus, the lines y = 3x + 2 and 2y = 6x - 6 are paralle.

3)

  • 8x - 2y = 3

simplifying to write in slope-intercept form

y = 4x - 3/2

Comparing with y=mx+b, the slope of y = 4x - 3/2:

m₁=4  

  • x + 4y = - 1

simplifying to write in slope-intercept form

y=-1/4x-1/4

Comparing with y=mx+b, the slope of y=-1/4x-1/4:

m₂=-1/4

As

m₁ × m₂ = -1

4 ×  - 1/4 = -1

-1 = -1

Thus, the lines 8x - 2y = 3 and x + 4y = - 1 are perpendicular.

4)

  • 3x+2y = 5

simplifying to write in slope-intercept form

y = -3/2x + 5/2

Comparing with y=mx+b, the slope of y = -3/2x + 5/2:

m₁=-3/2  

  • 3y + 2x = - 3

simplifying to write in slope-intercept form

y = -2/3x - 1

Comparing with y=mx+b, the slope of y = -2/3x - 1:

m₂=-2/3

As m₁ and m₂ are neither equal nor their product is -1, hence the lines neither perpendicular nor parallel.

5)

  • y - 5 = 6x

simplifying to write in slope-intercept form

y=6x+5

Comparing with y=mx+b, the slope of y=6x+5:

m₁=6  

  • y - 6x = - 1

simplifying to write in slope-intercept form

y=6x-1

Comparing with y=mx+b, the slope of y=6x-1:

m₂=6

As the slopes of y - 5 = 6x and y - 6x = -1 are equal.

i.e. m₁ = m₂ → 6 = 6

Thus, the lines y - 5 = 6x and y - 6x = -1 are paralle.

6)

  • y = 3х + 9

Comparing with y=mx+b, the slope of y = 3х + 9:

m₁=3  

  • y = -1/3x - 4

Comparing with y=mx+b, the slope of y =  1/3x - 4:

m₂=1/3

As m₁ and m₂ are neither equal nor their product is -1, hence the lines neither perpendicular nor parallel.