Answer:
The sum of the first 47 terms of the given series = 6016
Step-by-step explanation:
Given the sequence
13, 18, 23, ...
An arithmetic sequence has a constant difference 'd' and is defined by
[tex]a_n=a_1+\left(n-1\right)d[/tex]
[tex]18-13=5,\:\quad \:23-18=5[/tex]
As the difference between all the adjacent terms is the same.
so
[tex]d=5[/tex]
[tex]a_1=13[/tex]
Arithmetic sequence sum formula
[tex]n\left(a_1+\frac{d\left(n-1\right)}{2}\right)[/tex]
Put the values
[tex]d=5[/tex]
[tex]a_1=13[/tex]
[tex]n=47[/tex]
[tex]=47\left(13+\frac{5\left(47-1\right)}{2}\right)[/tex]
[tex]=47\left(13+\frac{5\left(47-1\right)}{2}\right)[/tex]
[tex]=47\left(13+115\right)[/tex]
[tex]=47\cdot \:128[/tex]
[tex]=6016[/tex]
Thus, the sum of the first 47 terms of the given series = 6016