Respuesta :

Answer:

The sum of the first 47 terms of the given series = 6016

Step-by-step explanation:

Given the sequence

13, 18, 23, ...

An arithmetic sequence has a constant difference 'd' and is defined by

[tex]a_n=a_1+\left(n-1\right)d[/tex]

[tex]18-13=5,\:\quad \:23-18=5[/tex]

As the difference between all the adjacent terms is the same.

so

[tex]d=5[/tex]

[tex]a_1=13[/tex]

Arithmetic sequence sum formula

[tex]n\left(a_1+\frac{d\left(n-1\right)}{2}\right)[/tex]

Put the values

[tex]d=5[/tex]

[tex]a_1=13[/tex]

[tex]n=47[/tex]

[tex]=47\left(13+\frac{5\left(47-1\right)}{2}\right)[/tex]

[tex]=47\left(13+\frac{5\left(47-1\right)}{2}\right)[/tex]

[tex]=47\left(13+115\right)[/tex]

[tex]=47\cdot \:128[/tex]

[tex]=6016[/tex]

Thus, the sum of the first 47 terms of the given series = 6016