Respuesta :

Answer:

The solutions to the system of equations are:

[tex]x=\frac{325}{9},\:y=\frac{65}{9}[/tex]

Step-by-step explanation:

Given the system of the equations

[tex]\begin{bmatrix}2x-y=65\\ 5y=x\end{bmatrix}[/tex]

isolate 'x' for 2x-y

[tex]2x-y=65[/tex]

Add y to both sides

[tex]2x-y+y=65+y[/tex]

[tex]2x=65+y[/tex]

Divide both sides by 2

[tex]\frac{2x}{2}=\frac{65}{2}+\frac{y}{2}[/tex]

[tex]x=\frac{65+y}{2}[/tex]

[tex]\mathrm{Subsititute\:}x=\frac{65+y}{2}[/tex]

isolate 'y' for  [tex]5y=\frac{65+y}{2}[/tex]

[tex]5y=\frac{65+y}{2}[/tex]

[tex]10y=65+y[/tex]

subtract y from both sides

[tex]10y-y=65+y-y[/tex]

[tex]9y=65[/tex]

Divide both sides by 9

[tex]\frac{9y}{9}=\frac{65}{9}[/tex]

[tex]y=\frac{65}{9}[/tex]

[tex]\mathrm{For\:}x=\frac{65+y}{2}[/tex]

[tex]\mathrm{Subsititute\:}y=\frac{65}{9}[/tex]

[tex]x=\frac{65+\frac{65}{9}}{2}[/tex]

[tex]x=\frac{325}{9}[/tex]

The solutions to the system of equations are:

[tex]x=\frac{325}{9},\:y=\frac{65}{9}[/tex]