Answer:
The solutions to the system of equations are:
[tex]x=\frac{325}{9},\:y=\frac{65}{9}[/tex]
Step-by-step explanation:
Given the system of the equations
[tex]\begin{bmatrix}2x-y=65\\ 5y=x\end{bmatrix}[/tex]
isolate 'x' for 2x-y
[tex]2x-y=65[/tex]
Add y to both sides
[tex]2x-y+y=65+y[/tex]
[tex]2x=65+y[/tex]
Divide both sides by 2
[tex]\frac{2x}{2}=\frac{65}{2}+\frac{y}{2}[/tex]
[tex]x=\frac{65+y}{2}[/tex]
[tex]\mathrm{Subsititute\:}x=\frac{65+y}{2}[/tex]
isolate 'y' for [tex]5y=\frac{65+y}{2}[/tex]
[tex]5y=\frac{65+y}{2}[/tex]
[tex]10y=65+y[/tex]
subtract y from both sides
[tex]10y-y=65+y-y[/tex]
[tex]9y=65[/tex]
Divide both sides by 9
[tex]\frac{9y}{9}=\frac{65}{9}[/tex]
[tex]y=\frac{65}{9}[/tex]
[tex]\mathrm{For\:}x=\frac{65+y}{2}[/tex]
[tex]\mathrm{Subsititute\:}y=\frac{65}{9}[/tex]
[tex]x=\frac{65+\frac{65}{9}}{2}[/tex]
[tex]x=\frac{325}{9}[/tex]
The solutions to the system of equations are:
[tex]x=\frac{325}{9},\:y=\frac{65}{9}[/tex]