Respuesta :
Answer:
1.2 kg
__________________________________________________________
We are given:
Mass of the block = 2 kg
Coefficient of Static Friction = 0.6
__________________________________________________________
Friction Force on the Block:
Finding the Normal Force:
We know that the normal force will be equal and opposite to the weight of the 2 kg block
So, Normal Force = mg
replacing the variables with the given values
Normal Force = (2)(9.8) [Taking g = 9.8]
Normal Force = 19.6 N
Friction force on the Block:
We know that:
Coefficient of Static Friction = Static Friction Force/Normal Force
replacing the variables
0.6 = Static Friction force / 19.6
Static Friction force = 0.6*19.6 N [Multiplying both sides by 19.6]
Static Friction force = 11.76 N
__________________________________________________________
Largest Mass that can Hang:
We know that the Static Friction force is 11.76 N, this means that a force of 11.76 N will be applied to keep the object at rest
So, if the weight of the second block is less than the static friction force, it will hang
Weight of the second block ≤ 11.76
We know that weight = mg
mg ≤ 11.76
m(9.8) ≤ 11.76 [since g = 9.8]
m ≤ 1.2 kg [dividing both sides by 9.8]
From this, we can say that the maximum mass of the second block is 1.2 Kg