Answer:
D) The vertex of the equation is [tex]f(x) = \frac{2}{3}\cdot (x+3)^{2}-6[/tex]. The standard form of the equation is [tex]f(x) = \frac{2}{3}\cdot x^{2}+4\cdot x[/tex].
Step-by-step explanation:
Let [tex]A(x,y) = (0,0)[/tex] and [tex]V(x,y) = (-3, -6)[/tex] (vertex).
If we know that [tex]x = 0[/tex], [tex]y = 0[/tex], [tex]h = -3[/tex] and [tex]k = -6[/tex], then the standard equation results in:
[tex]a\cdot (0+3)^{2}-6 = 0[/tex]
And the value of [tex]a[/tex] is:
[tex]9\cdot a - 6 = 0[/tex]
[tex]a = \frac{2}{3}[/tex]
And the vertex form of the equation is [tex]f(x) = \frac{2}{3}\cdot (x+3)^{2}-6[/tex].
Lastly, the standard form of the equation is found by algebraic means:
[tex]f(x) = \frac{2}{3}\cdot (x^{2}+6\cdot x +9)-6[/tex]
[tex]f(x) = \frac{2}{3}\cdot x^{2}+4\cdot x[/tex]
The standard form of the equation is [tex]f(x) = \frac{2}{3}\cdot x^{2}+4\cdot x[/tex].
In consequence, the right answer is D.