Given:
In ΔHIJ, h = 40 cm, ∠J=20° and ∠H=93°.
To find:
The length of j, to the nearest centimeter.
Solution:
According to Law of sine,
[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]
In ΔHIJ, using law of sine, we get
[tex]\dfrac{j}{\sin J}=\dfrac{h}{\sin H}[/tex]
[tex]\dfrac{j}{\sin (20^\circ)}=\dfrac{40}{\sin (93^\circ)}}[/tex]
[tex]j=\dfrac{40\times \sin (20^\circ)}{\sin (93^\circ)}}[/tex]
On further simplification, we get
[tex]j=\dfrac{40\times 0.34202}{0.99863}[/tex]
[tex]j=\dfrac{13.6808}{0.99863}[/tex]
[tex]j=13.69958[/tex]
Approximate the value to the nearest centimeter.
[tex]j\approx 14[/tex]
Therefore, the length of j is 14 cm.