Doug hits a baseball straight towards a 15 ft high fence that is 400 ft from home plate. The ball is hit 2.5ft above the ground and leaves the bat at an angle of 30∘ with the horizontal. Find the minimum initial velocity needed for the ball to clear the fence.

Respuesta :

Answer:

[tex]125.4\ \text{m/s}[/tex]

Step-by-step explanation:

u = Initial velocity of baseball

[tex]\theta[/tex] = Angle of hit = [tex]30^{\circ}[/tex]

x = Displacement in x direction = 400 ft

y = Displacement in y direction = 15 ft

[tex]y_0[/tex] = Height of hit = 2.5 ft

[tex]a_y[/tex] = g = Acceleration due to gravity = [tex]32.2\ \text{ft/s}^2[/tex]

t = Time taken

Displacement in x direction

[tex]x=u_xt\\\Rightarrow x=u\cos\theta t\\\Rightarrow t=\dfrac{x}{u\cos\theta}\\\Rightarrow t=\dfrac{400}{u\cos30^{\circ}}\\\Rightarrow t=\dfrac{400}{u\dfrac{\sqrt{3}}{2}}\\\Rightarrow t=\dfrac{800}{u\sqrt{3}}[/tex]

Displacement in y direction

[tex]y=y_0+u_yt+\dfrac{1}{2}a_yt^2\\\Rightarrow y=y_0+u\sin\theta t+\dfrac{1}{2}a_yt^2\\\Rightarrow 15=2.5+u\sin30^{\circ}(\dfrac{800}{u\sqrt{3}})+\dfrac{1}{2}\times -32.2\times (\dfrac{800}{u\sqrt{3}})^2\\\Rightarrow \dfrac{400}{\sqrt{3}}-\dfrac{10304000}{3u^2}-12.5=0\\\Rightarrow 218.44=\dfrac{10304000}{3u^2}\\\Rightarrow u=\sqrt{\dfrac{10304000}{3\times218.44}}\\\Rightarrow u=125.4\ \text{m/s}[/tex]

The minimum initial velocity needed for the ball to clear the fence is [tex]125.4\ \text{m/s}[/tex]