Respuesta :

Answer:

The range is:

{-4, 1, 2, 5, 8}

Step-by-step explanation:

Given the function

[tex]f(x)=3x+2[/tex]

  • We know that the domain of a function is the set of input or argument values for which the function is real and defined.

As the domain interval -2 ≤ x ≤ 2

i.e. the values in the domain = {-2, -1, 0, 1, 2}

  • We also know that the range of a function is the set of values of the dependent variable for which a function is defined.

As the domain interval -2 ≤ x ≤ 2

Putting all the x-values in the domain interval in the function

so

putting x=-2 in the function

[tex]f(x)=3x+2[/tex]

[tex]f(-2)=3(-2)+2=-6+2=-4[/tex]

putting x=-1 in the function

[tex]f(x)=3x+2[/tex]

[tex]f(-1)=3(-1)+2=-3+2=1[/tex]

putting x=0 in the function

[tex]f(x)=3x+2[/tex]

[tex]f(0)=3(0)+2=0+2=2[/tex]

putting x=1 in the function

[tex]f(x)=3x+2[/tex]

[tex]f(1)=3(1)+2=3+2=5[/tex]

putting x=2 in the function

[tex]f(x)=3x+2[/tex]

[tex]f(2)=3(2)+2=6+2=8[/tex]

Thus, when we put the domain values, the corresponding range values are:

x           y

-2         -4

-1           1

0           2

1             5

2            8

Therefore, the range is:

{-4, 1, 2, 5, 8}