Answer:
The pre-image Q is [tex]Q(x,y) =(8,4)[/tex] .
Explanation:
From Linear Algebra, we can define dilation by the following expression:
[tex]Q'(x,y) = O(x,y) + k\cdot [Q(x,y)-O(x,y)][/tex] (1)
Where:
[tex]O(x,y)[/tex] - Reference point, dimensionless.
[tex]Q(x,y)[/tex] - Original point, dimensionless.
[tex]Q'(x,y)[/tex] - Dilated point, dimensionless.
[tex]k[/tex] - Dilation factor, dimensionless.
If we know that [tex]O(x,y) = (0,0)[/tex], [tex]Q'(x,y) = (16,8)[/tex] and [tex]k = 2[/tex], then the original point is:
[tex]Q'(x,y)-O(x,y) = k\cdot [Q(x,y)-O(x,y)][/tex]
[tex]Q(x,y) = O(x,y) +\frac{1}{k}\cdot [Q'(x,y)-O(x,y)][/tex]
[tex]Q(x,y) =(0,0)+\frac{1}{2}\cdot [(16,8)-(0,0)][/tex]
[tex]Q(x,y) =(8,4)[/tex]
The pre-image Q is [tex]Q(x,y) =(8,4)[/tex] .