Answer:
Step-by-step explanation:
Step one
Given the coordinates
ABCD with vertices A(−4, 2), B(8,2), C(11, 7), and D(-1, 7).
AB=(−4, 2), (8,2)
BC=(8,2), (11, 7)
CD=(11, 7),(-1, 7)
DA=(-1, 7),(-4,2)
The distance between points AB=
[tex]AB= \sqrt (x_2-x_1)^2+(y_2-y_1)^2[/tex]
[tex]AB= \sqrt (8+4)^2+(2-2)^2\\\\AB= \sqrt 12^2+(0)^2\\\\AB= \sqrt144\\\\AB=12[/tex]
The distance between points BC=
[tex]BC= \sqrt (11-8)^2+(7-2)^2\\\\BC= \sqrt 3^2+(5)^2\\\\BC= \sqrt34\\\\BC=5.8[/tex]
The distance between points CD
[tex]CD= \sqrt (-1-11)^2+(7-7)^2\\\\CD= \sqrt -12^2+(0)^2\\\\CD= \sqrt144\\\\CD=12[/tex]
The distance between points DA
[tex]DA= \sqrt (-4+1)^2+(2-7)^2\\\\DA= \sqrt -3^2+(-5)^2\\\\DA= \sqrt34\\\\DA=5.8[/tex]
Hence the perimeter of the footpath= 12+5.8+12+5.8
=35.7