Respuesta :
Answer:
pH = 4.164
Explanation:
The first process is to find the initial moles for the base (B) & the acid (HA)
i.e.
[tex]= \dfrac{27 mL \times 0.0758 \ moles \ \ of \ B}{1000 \ mL}[/tex]
[tex]=0.0020466[/tex]
[tex]\simeq 2.047\times 10^{-3} \ moles \ of \ B[/tex]
[tex]= \dfrac{27 mL \times 0.0553 \ moles \ \ of \ HA}{1000 \ mL}[/tex]
[tex]=0.0014931[/tex]
[tex]\simeq 1.493\times 10^{-3} \ moles \ of \ HA[/tex]
The acid with base reaction is expressed as;
HA + B → A⁻ + HB⁺
to 1.493 × 10⁻³ 2.047 × 10⁻³ - -
- 1.493 × 10⁻³ 1.493 × 10⁻³ 1.493 × 10⁻³ 1.493 × 10⁻³
0 5.54 × 10⁻⁴ 1.493 × 10⁻³ 1.493 × 10⁻³
From observation; both the acid & base weak
Given that:
The pKa for base = 4.594
The pKa for acid = 3.235
Recall that;
pKa = -log Ka
So; Ka = [tex]\mathbf{10^{-Ka}}[/tex]
By applying this:
For Base; Ka = [tex]10^{-4.594}[/tex] = 2.5468 × 10⁻⁵
For Acid: Ka = [tex]10^{ -3.235}[/tex] = 5.821 × 10⁻⁴
After the reaction; we have the base with its conjugate acid & conjugate base of acid; Thus, since the conjugate acid of the base possesses a higher value of K, it is likely it would be the one to define the pH of the solution.
By analyzing the system, we have:
HB⁺ + H₂O ↔ B + H₃O⁺
[tex]\dfrac{1.493\times 10^{-3}}{0.1 \ L}[/tex] [tex]\dfrac{5.54\times 10^{-4}}{0.1 \ L}[/tex]
to 0.01493 M 0.00554 M
- x x x
0.01493 - x 0.00554 - x x
Thus;
[tex]2.5468 \times 10^{-5} = \dfrac{(0.00554 -x)\times x}{(0.01493-x)}[/tex]
Using the common ion effect;
0.00554 - x [tex]\simeq[/tex] 0.00554 &
0.01493 - x [tex]\simeq[/tex] 0.01493
∴
[tex]x = \dfrac{2.5468 \times 10^{-5} \times 0.01493}{0.00554}[/tex]
x = [H₃O⁺] = 6.8635 × 10⁻⁵
∴
pH = -log(6.8635 × 10⁻⁵)
pH = 4.164