Respuesta :
Answer:
[tex]\mathbf{P =\bigg (P_o +\dfrac{ I}{k} \bigg)e^{kt}- \dfrac{I}{k}}[/tex]
Step-by-step explanation:
Given that:
A country population at any given time (t) is:
[tex]\dfrac{dP}{dt}= kP+I[/tex]
where;
P = population at any time t
k = positive constant
I = constant rate of immigration into the country.
Using the method of separation of the variable;
[tex]\dfrac{dP}{kP+1}= dt[/tex]
Taking integration on both sides:
[tex]\int \dfrac{dP}{kP+I}= \int \ dt[/tex]
[tex]\dfrac{1}{k} log (kP + I) = t+c_1 \ \ \ here: c_1 = constant \ of \ integration[/tex]
[tex]log (kP + I) =k t+kc_1[/tex]
By applying the exponential on both sides;
[tex]e^{log (kP + I) }=e^{k t+kc_1 }[/tex]
[tex]KP+I = e^{kt} *e^{kc_1}[/tex]
Assume [tex]e^{kc_1 }= C[/tex]
Then:
[tex]kP + I = Ce^{kt}[/tex]
[tex]kP = Ce^{kt}-I[/tex]
[tex]P =\dfrac{ Ce^{kt}-I}{k} \ \ \---- Let \ that \ be \ equation \ (1)[/tex]
When time t = 0, The Total population of the country is also [tex]P_o[/tex]
[tex]P_o = \dfrac{Ce^{0(t)} -I}{k}[/tex]
[tex]P_o = \dfrac{Ce^{0} -I}{k}[/tex]
[tex]P_o = \dfrac{C-I}{k}[/tex]
C - I = kP₀
C = kP₀ + I
Substituting the value of C back into equation(1), we have:
[tex]P =\dfrac{ (kP_o+1)e^{kt}-I}{k}[/tex]
[tex]P =\dfrac{ (kP_o+1)e^{kt}}{k} - \dfrac{I}{k}[/tex]
[tex]\mathbf{P =\bigg (P_o +\dfrac{ I}{k} \bigg)e^{kt}- \dfrac{I}{k}}[/tex]