Respuesta :
Solution :
Given :
Principal amount deposited, P = $ 6000
Rate of interest, r = 5%
Number of years, t = 4 years
When the deposited amount is compounded semiannually, i.e. n = 2
Therefore,
Future value,
[tex]$FV = P\left( 1 +\frac{r}{n}\right)^{nt}$[/tex]
[tex]$FV = 6000\left( 1 +\frac{0.05}{2}\right)^{2 \times 4}$[/tex]
[tex]$FV = 6000 \times (1.025)^8$[/tex]
= 6000 x 1.2184
= 7310.4
Therefore, after 4 years there will be $ 7310.4 in the amount when compounded semi annually.
When the deposited amount is compounded quarterly, i.e. n = 4
Therefore,
Future value,
[tex]$FV = P\left( 1 +\frac{r}{n}\right)^{nt}$[/tex]
[tex]$FV = 6000\left( 1 +\frac{0.05}{4}\right)^{4 \times 4}$[/tex]
[tex]$FV = 6000 \times (1.0125)^{16}$[/tex]
= 6000 x 1.219889
= 7319.334
Therefore, after 4 years there will be $ 7319.334 in the amount when compounded quarterly.
When the deposited amount is compounded monthly, i.e. n = 12
Therefore,
Future value,
[tex]$FV = P\left( 1 +\frac{r}{n}\right)^{nt}$[/tex]
[tex]$FV = 6000\left( 1 +\frac{0.05}{12}\right)^{12 \times 4}$[/tex]
[tex]$FV = 6000 \times (1.0041667)^{48}$[/tex]
= 6000 x 1.22089
= 7325.34
Therefore, after 4 years there will be $ 7325.34 in the amount when compounded monthly.