Answer:
[tex]\displaystyle \frac{14}{3}\sqrt{5}[/tex]
Step-by-step explanation:
Simplify:
[tex]\displaystyle \sqrt{80} + \sqrt{2\frac{2}{9}}[/tex]
We must express the mixed fraction into an improper fraction:
[tex]2\frac{2}{9}=2+\frac{2}{9}=\frac{20}{9}[/tex]
[tex]\displaystyle \sqrt{80} + \sqrt{2\frac{2}{9}}=\displaystyle \sqrt{80} + \sqrt{\frac{20}{9}}[/tex]
Since 80 = 16*5 and 20=4*5
[tex]\displaystyle \sqrt{80} + \sqrt{2\frac{2}{9}}=\displaystyle \sqrt{16*5} + \sqrt{\frac{4*5}{9}}[/tex]
[tex]\displaystyle \sqrt{80} + \sqrt{2\frac{2}{9}}=\displaystyle 4\sqrt{5} + \frac{2}{3}\sqrt{5}[/tex]
Adding the fractions:
[tex]\displaystyle \sqrt{80} + \sqrt{2\frac{2}{9}}=\displaystyle (4 + \frac{2}{3})\sqrt{5}[/tex]
[tex]\mathbf{\displaystyle \sqrt{80} + \sqrt{2\frac{2}{9}}=\displaystyle \frac{14}{3}\sqrt{5}}[/tex]