Respuesta :
Let f(z) = (4z ² + 2z) / (2z ² - 3z + 1).
First, carry out the division:
f(z) = 2 + (8z - 2) / (2z ² - 3z + 1)
Observe that
2z ² - 3z + 1 = (2z - 1) (z - 1)
so you can separate the rational part of f(z) into partial fractions. We have
(8z - 2) / (2z ² - 3z + 1) = a / (2z - 1) + b / (z - 1)
8z - 2 = a (z - 1) + b (2z - 1)
8z - 2 = (a + 2b) z - (a + b)
so that a + 2b = 8 and a + b = 2, yielding a = -4 and b = 6.
So we have
f(z) = 2 - 4 / (2z - 1) + 6 / (z - 1)
or
f(z) = 2 - (2/z) (1 / (1 - 1/(2z))) + (6/z) (1 / (1 - 1/z))
Recall that for |z| < 1, we have
[tex]\displaystyle\frac1{1-z}=\sum_{n=0}^\infty z^n[/tex]
Replace z with 1/z to get
[tex]\displaystyle\frac1{1-\frac1z}=\sum_{n=0}^\infty z^{-n}[/tex]
so that by substitution, we can write
[tex]\displaystyle f(z) = 2 - \frac2z \sum_{n=0}^\infty (2z)^{-n} + \frac6z \sum_{n=0}^\infty z^{-n}[/tex]
Now condense f(z) into one series:
[tex]\displaystyle f(z) = 2 - \sum_{n=0}^\infty 2^{-n+1} z^{-(n+1)} + 6 \sum_{n=0}^\infty z^{-n-1}[/tex]
[tex]\displaystyle f(z) = 2 - \sum_{n=0}^\infty \left(6+2^{-n+1}\right) z^{-(n+1)}[/tex]
[tex]\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{-(n-1)+1}\right) z^{-n}[/tex]
[tex]\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{2-n}\right) z^{-n}[/tex]
So, the inverse Z transform of f(z) is [tex]\boxed{6+2^{2-n}}[/tex].