Answer:
210 cm²
Step-by-step explanation:
Area of the surface having dimensions 6 cm × 11 cm
[tex]A_1[/tex] = 11 × 6 = 66 cm²
Area of the surface having dimensions 3 cm × 6 cm
[tex]A_2[/tex] = 3 × 6 = 18 cm²
Area of the surface having dimensions 7 cm × 6 cm
[tex]A_3[/tex] = 7 × 6 = 42 cm²
Area of the surface having dimensions 5 cm × 6 cm
[tex]A_4[/tex] = 5 × 6 = 30 cm²
Area of the trapezoidal surface on the top = [tex]\frac{1}{2}(b_1+b_2)h[/tex]
[tex]A_5[/tex] = [tex]\frac{1}{2}(11+7)3[/tex]
= 27 cm²
Area of the trapezoidal base [tex]A_6[/tex] = Area of the surface on the top = 27 cm²
Total surface area = [tex]A_1+A_2+A_3+A_4+A_5+A_6=66+18+42+30+27 + 27[/tex]
= 210 cm²
Therefore, total surface area of the trapezoidal prism = 210 cm²