Respuesta :

Answer:

F. [tex] 4, 4\sqrt{3} [/tex]

Step-by-step explanation:

✔️Finding length of side s using:

[tex] cos(\theta) = \frac{adjacent}{hypotenuse} [/tex]

Where,

[tex] cos(\theta) = cos(60) = \frac{1}{2} [/tex]

Adjacent = s

Hypotenuse = 8

Plug in the values

[tex] \frac{1}{2} = \frac{s}{8} [/tex]

Multiply both sides by 8

[tex] \frac{1}{2} \times 8 = \frac{s}{8} \time 8 [/tex]

[tex] \frac{8}{2} = s [/tex]

[tex] 4 = s [/tex]

s = 4

✔️Finding length of side q using:

[tex] sin(\theta) = \frac{opposite}{hypotenuse} [/tex]

Where,

[tex] sin(\theta) = sin(60) = \frac{\sqrt{3}}{2} [/tex]

Opposite = q

Hypotenuse = 8

Plug in the values

[tex] \frac{\sqrt{3}}{2} = \frac{q}{8} [/tex]

Multiply both sides by 8

[tex] \frac{\sqrt{3}}{2} \times 8 = \frac{q}{8} \times 8 [/tex]

[tex] \frac{\sqrt{3}}{1} \times 4 = q [/tex]

[tex] 4\sqrt{3} = q [/tex]

[tex] q = 4\sqrt{3} [/tex]