Respuesta :

Answer:

The range of 2x+329:

[tex]\mathrm{Range\:of\:}2x+329:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

Step-by-step explanation:

Given the expression

[tex]2x+329[/tex]

We know that range is termed as the set of values of the dependent variable for which a function is defined.

  • We also know that the range of polynomials with odd degree is all the real numbers.

       i.e. [tex]-\infty \:<f\left(x\right)<\infty \:[/tex]

The given expression is a polynomial with an odd degree. Hence, the range of this expression will be all the real numbers.

Thus, the range of 2x+329:

[tex]\mathrm{Range\:of\:}2x+329:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]