Respuesta :

Answer:

Please check the explanation.

Step-by-step explanation:

Given the polynomial function

[tex]f\left(x\right)\:=x^3+2x^2-16x-32[/tex]

Let us determine the factors by solving

[tex]\:\left0\right\:=x^3+2x^2-16x-32\:[/tex]

[tex]\left(x+2\right)\left(x+4\right)\left(x-4\right)=0[/tex]

Using the zero factor principle:

if  [tex]ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)[/tex]

[tex]x+2=0\quad \mathrm{or}\quad \:x+4=0\quad \mathrm{or}\quad \:x-4=0[/tex]

Thus, (x+2) (x+4) and (x-4) are the factors of the polynomial function.

Therefore,

YES

  • (x+2)
  • (x+4)
  • (x-4)

And (x-2) (x+6) are not the factors of the polynomial function.

Therefore,

YES

  • (x-2)
  • (x+6)