Respuesta :
The value of sin(2x) is [tex]\sin(2x) = - \frac{\sqrt{15}}{8}[/tex]
How to determine the value of sin(2x)
The cosine ratio is given as:
[tex]\cos(x) = -\frac 14[/tex]
Calculate sine(x) using the following identity equation
[tex]\sin^2(x) + \cos^2(x) = 1[/tex]
So we have:
[tex]\sin^2(x) + (1/4)^2 = 1[/tex]
[tex]\sin^2(x) + 1/16= 1[/tex]
Subtract 1/16 from both sides
[tex]\sin^2(x) = 15/16[/tex]
Take the square root of both sides
[tex]\sin(x) = \pm \sqrt{15/16[/tex]
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
[tex]\sin(x) = -\sqrt{15/16[/tex]
Simplify
[tex]\sin(x) = \sqrt{15}/4[/tex]
sin(2x) is then calculated as:
[tex]\sin(2x) = 2\sin(x)\cos(x)[/tex]
So, we have:
[tex]\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14[/tex]
This gives
[tex]\sin(2x) = - \frac{\sqrt{15}}{8}[/tex]
Read more about trigonometry at:
https://brainly.com/question/8120556