If cos(x) = Negative one-fourth and tan(x) < 0, what is sin(2x) ? Negative StartFraction StartRoot 15 EndRoot Over 4 EndFraction Negative StartFraction StartRoot 15 EndRoot Over 8 EndFraction StartFraction StartRoot 15 EndRoot Over 8 EndFraction StartFraction StartRoot 15 EndRoot Over 4 EndFraction

Respuesta :

Answer:

B. -15 square root / 8

Step-by-step explanation:

EDG2020

The value of sin(2x) is [tex]\sin(2x) = - \frac{\sqrt{15}}{8}[/tex]

How to determine the value of sin(2x)

The cosine ratio is given as:

[tex]\cos(x) = -\frac 14[/tex]

Calculate sine(x) using the following identity equation

[tex]\sin^2(x) + \cos^2(x) = 1[/tex]

So we have:

[tex]\sin^2(x) + (1/4)^2 = 1[/tex]

[tex]\sin^2(x) + 1/16= 1[/tex]

Subtract 1/16 from both sides

[tex]\sin^2(x) = 15/16[/tex]

Take the square root of both sides

[tex]\sin(x) = \pm \sqrt{15/16[/tex]

Given that

tan(x) < 0

It means that:

sin(x) < 0

So, we have:

[tex]\sin(x) = -\sqrt{15/16[/tex]

Simplify

[tex]\sin(x) = \sqrt{15}/4[/tex]

sin(2x) is then calculated as:

[tex]\sin(2x) = 2\sin(x)\cos(x)[/tex]

So, we have:

[tex]\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14[/tex]

This gives

[tex]\sin(2x) = - \frac{\sqrt{15}}{8}[/tex]

Read more about trigonometry at:

https://brainly.com/question/8120556