Respuesta :
Answer:
A) E = 4.96 x 10³ eV
B) E = 4.19 x 10⁴ eV
C) E = 3.73 x 10⁹ eV
Explanation:
A)
For photon energy is given as:
[tex]E = hv[/tex]
[tex]E = \frac{hc}{\lambda}[/tex]
where,
E = energy of photon = ?
h = 6.625 x 10⁻³⁴ J.s
λ = wavelength = 0.25 nm = 0.25 x 10⁻⁹ m
Therefore,
[tex]E = \frac{(6.625 x 10^{-34} J.s)(3 x 10^8 m/s)}{0.25 x 10^{-9} m}[/tex]
[tex]E = (7.95 x 10^{-16} J)(\frac{1 eV}{1.6 x 10^{-19} J})[/tex]
E = 4.96 x 10³ eV
B)
The energy of a particle at rest is given as:
[tex]E = m_{0}c^2[/tex]
where,
E = Energy of electron = ?
m₀ = rest mass of electron = 9.1 x 10⁻³¹ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,
[tex]E = (9.1 x 10^{-31} kg)(3 x 10^8 m/s)^2\\[/tex]
[tex]E = (8.19 x 10^{-14} J)(\frac{1 eV}{1.6 x 10^{-19} J})\\[/tex]
E = 4.19 x 10⁴ eV
C)
The energy of a particle at rest is given as:
[tex]E = m_{0}c^2[/tex]
where,
E = Energy of alpha particle = ?
m₀ = rest mass of alpha particle = 6.64 x 10⁻²⁷ kg
c = speed of light = 3 x 10⁸ m/s
Therefore,
[tex]E = (6.64 x 10^{-27} kg)(3 x 10^8 m/s)^2\\[/tex]
[tex]E = (5.97 x 10^{-10} J)(\frac{1 eV}{1.6 x 10^{-19} J})\\[/tex]
E = 3.73 x 10⁹ eV
A) The energy in electron volts for a particle with this wavelength if the particle is a photon is; .E = 4969.5 eV or 4.9695 keV
B) The energy in electron volts for a particle with this wavelength if the particle is an electron is; E = 23.58 eV
C) E = 0.003306 eV
A) The formula for the energy here is;
E = hc/λ
where;
h is planck's constant = 6.626 × 10⁻³⁴ J.s
c is speed of light = 3 × 10⁸ m/s
λ is wavelength = 0.25 nm = 0.25 x 10⁻⁹ m
Thus;
E = (6.626 × 10⁻³⁴ × 3 × 10⁸)/(0.25 x 10⁻⁹)
79.512 × 10⁻¹⁷ J
converting to eV gives;
E = (79.512 × 10⁻¹⁷)/(1.6 × 10⁻¹⁹)
E = 4969.5 eV or 4.9695 keV
B) Formula for the energy if the particle is an electron is;
E = h²/(2mλ²)
where m = 9.31 × 10⁻³¹ kg
E = (6.626 × 10⁻³⁴)²/(2 × 9.31 × 10⁻³¹ × (0.25 x 10⁻⁹)²)
E = 37.726 × 10⁻¹⁹ J
Converting to eV gives;
E = (37.726 × 10⁻¹⁹)/(1.6 × 10⁻¹⁹)
E = 23.58 eV
C) Mass of alpha particle is; m = 6.64 × 10⁻²⁷ kg
E = h²/(2mλ²)
where m = 6.64 × 10⁻²⁷ kg
E = (6.626 × 10⁻³⁴)²/(2 × 6.64 × 10⁻²⁷ × (0.25 x 10⁻⁹)²)
E = 52.896 × 10⁻²³ J
Converting to eV gives;
E = (52.896 × 10⁻²³)/(1.6 × 10⁻¹⁹)
E = 0.003306 eV
Read more at; https://brainly.com/question/17190856