The length a rectangular pan is represented by 5a2 and the area of the rectangular pan is represented by 5a4 + 10a3 - 15a2, find the polynomial expression that represents the width of the pan. Write your answer in descending order. Please use the palette below to enter your answer

Respuesta :

Answer:

[tex]Width = a^2 + 2a - 3[/tex]

Step-by-step explanation:

Given

[tex]Area = 5a^4 + 10a^3 - 15a^2[/tex]

[tex]Length = 5a^2[/tex]

Required

Determine the Width

The area of a rectangle is calculated using:

[tex]Area= Length * Width[/tex]

Make Width the subject

[tex]Width = \frac{Area}{Length}[/tex]

Substitute values for Area and Length

[tex]Width = \frac{5a^4 + 10a^3 - 15a^2}{5a^2}[/tex]

Factorize the numerator

[tex]Width = \frac{5a^2(a^2 + 2a - 3)}{5a^2}[/tex]

[tex]Width = a^2 + 2a - 3[/tex]

Hence, the polynomial for the width of the rectangle is:

[tex]Width = a^2 + 2a - 3[/tex]