Answer:
[tex]Width = a^2 + 2a - 3[/tex]
Step-by-step explanation:
Given
[tex]Area = 5a^4 + 10a^3 - 15a^2[/tex]
[tex]Length = 5a^2[/tex]
Required
Determine the Width
The area of a rectangle is calculated using:
[tex]Area= Length * Width[/tex]
Make Width the subject
[tex]Width = \frac{Area}{Length}[/tex]
Substitute values for Area and Length
[tex]Width = \frac{5a^4 + 10a^3 - 15a^2}{5a^2}[/tex]
Factorize the numerator
[tex]Width = \frac{5a^2(a^2 + 2a - 3)}{5a^2}[/tex]
[tex]Width = a^2 + 2a - 3[/tex]
Hence, the polynomial for the width of the rectangle is:
[tex]Width = a^2 + 2a - 3[/tex]