Answer:
219 scatterings
Explanation:
Given that:
The Coolant used In the liquid metal fast breed reactor = Sodium
The atomic weight (A) of sodium = 23
The initial energy [tex]E_{i}[/tex] = 2 - MeV
The final energy [tex]E_{f}[/tex] = 0.025 eV (thermal energy)
The number of elastic neutron scatterings (n) needed to reach the given average thermal energy can be computed as:
[tex]n = \dfrac{log \bigg(\dfrac{E_f}{E_i} \bigg)}{log \bigg [ \dfrac{A^2+1}{(A+1)^2} \bigg]}[/tex]
[tex]n = \dfrac{log \bigg(\dfrac{0.025}{2 \times 10^6} \bigg)}{log \bigg [ \dfrac{23^2+1}{(23+1)^2} \bigg]}[/tex]
[tex]n = \dfrac{log \bigg(1.25\times 10^{-8} \bigg)}{log \bigg [ 0.92014\bigg]}[/tex]
[tex]n = 218.643[/tex]
n ≅ 219 scatterings