Answer:
[tex]P = (-5,5)[/tex]
Step-by-step explanation:
Let the segments be A and B
[tex]A = (-9,3)[/tex]
[tex]B = (1,8)[/tex]
[tex]m:n = 2:3[/tex]
Required
Determine the endpoints after it is divided into ratios.
Let the point be represented with P
The formula to use is:
[tex]P = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex]
Where
[tex]A = (-9,3)[/tex] ----- [tex](x_1,y_1)[/tex]
[tex]B = (1,8)[/tex] ------ [tex](x_2,y_2)[/tex]
So:
[tex]P = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex]
[tex]P = (\frac{2 * 1 + 3 * -9}{2 + 3},\frac{2 * 8 + 3 * 3}{2 + 3})[/tex]
[tex]P = (\frac{-25}{5},\frac{25}{5})[/tex]
[tex]P = (-5,5)[/tex]