Respuesta :
Answer:
[tex]x^{4}[/tex] + x² + 1
Step-by-step explanation:
One way is to divide using Synthetic division
1 | 1 - 1 1 - 1 1 - 1
↓ 1 0 1 0 1
--------------------------------------
1 0 1 0 1 0 ← remainder
Since remainder is 0 then (x - 1) is a factor of the polynomial
The quotient is of degree 1 less than the dividend, that is
quotient = [tex]x^{4}[/tex] + x² + 1
Answer:
[tex]\boxed{x^4 + x^2 + x}[/tex]
Step-by-step explanation:
[tex]\frac{x^5 - x^4 + x^3 -x^2 + x - 1}{x - 1}[/tex]
[tex]= \frac{(x - 1)(x^4 + x^2 + x)}{x - 1}[/tex]
[tex]= x^4 + x^2 + x[/tex]
.
Happy to help :)