13 points Please answer quick.
Divide (x^5 - x^4 + x^3 - x^2 + x -1) by (x-1)
show your calculation
If you don't know don't answer.
If you do it I will report the answer.​

Respuesta :

Answer:

[tex]x^{4}[/tex] + x² + 1

Step-by-step explanation:

One way is to divide using Synthetic division

1 |  1    - 1    1    - 1    1    - 1

     ↓      1    0     1    0     1

   --------------------------------------  

     1      0     1     0    1    0 ← remainder

Since remainder is 0 then (x - 1) is a factor of the polynomial

The quotient is of degree 1 less than the dividend, that is

quotient = [tex]x^{4}[/tex] + x² + 1

     

Answer:

[tex]\boxed{x^4 + x^2 + x}[/tex]

Step-by-step explanation:

[tex]\frac{x^5 - x^4 + x^3 -x^2 + x - 1}{x - 1}[/tex]

[tex]= \frac{(x - 1)(x^4 + x^2 + x)}{x - 1}[/tex]

[tex]= x^4 + x^2 + x[/tex]

.

Happy to help :)