Respuesta :

Answer:

Area of ΔDEF is 2.25 times the area of ΔABC.

Step-by-step explanation:

Since, ΔDEF is the enlarged form of ΔABC,

Scale factor = [tex]\frac{\text{Side length of triangle ABC}}{\text{Corresponding side length of image triangle}}[/tex]

                    = [tex]\frac{15}{10}[/tex]

                    = 1.5

Since, ratio of the areas of image and preimage triangles = (Scale factor)²

[tex]\frac{\text{Area of image triangle}}{\text{Area of triangle ABC}}[/tex] = (Scale factor)²

[tex]\frac{\text{Area of image triangle}}{\text{Area of triangle ABC}}=(1.5)^2[/tex]

Area of image ΔDEF = 2.25(Area of ΔABC)

Therefore, area of ΔDEF is 2.25 times the area of ΔABC.

RELAXING NOICE
Relax