Solve the quadratic equation by completing the square. X^2+14x+38=0
Can you explain the steps too so I can understand it better. Also if there are more than one solution can you add all of the solutions. Thank you!

Respuesta :

Answer:

[tex] \rm x = - 7 \pm \sqrt{11} [/tex]

Step-by-step explanation:

Solve for x over the real numbers:

[tex] \longrightarrow [/tex] x² + 14x + 38 = 0

Subtract 38 from both sides:

[tex] \longrightarrow [/tex] x² + 14x + 38 - 38 = 0 - 38

[tex] \longrightarrow [/tex] x² + 14x = -38

Add 49 to both sides:

[tex] \longrightarrow [/tex] x² + 14x + 49 = 49 - 38

[tex] \longrightarrow [/tex] x² + 14x + 49 = 11

Write the left hand side as a square:

[tex] \longrightarrow [/tex] x² + 7x + 7x + 49 = 11

[tex] \longrightarrow [/tex] x(x + 7) + 7(x + 7) = 11

[tex] \longrightarrow [/tex] (x + 7)(x + 7) = 11

[tex] \longrightarrow [/tex] (x + 7)² = 11

Take the square root of both sides:

[tex] \longrightarrow [/tex] [tex] \sf \sqrt{{(x + 7)}^{2}} = \pm \sqrt{11} [/tex]

[tex] \longrightarrow [/tex] [tex] \sf x + 7 = \pm \sqrt{11} [/tex]

Subtract 7 from both sides:

[tex] \longrightarrow [/tex] [tex] \sf x = - 7 \pm \sqrt{11} [/tex]

RELAXING NOICE
Relax