Answer:
[tex] \rm x = - 7 \pm \sqrt{11} [/tex]
Step-by-step explanation:
Solve for x over the real numbers:
[tex] \longrightarrow [/tex] x² + 14x + 38 = 0
Subtract 38 from both sides:
[tex] \longrightarrow [/tex] x² + 14x + 38 - 38 = 0 - 38
[tex] \longrightarrow [/tex] x² + 14x = -38
Add 49 to both sides:
[tex] \longrightarrow [/tex] x² + 14x + 49 = 49 - 38
[tex] \longrightarrow [/tex] x² + 14x + 49 = 11
Write the left hand side as a square:
[tex] \longrightarrow [/tex] x² + 7x + 7x + 49 = 11
[tex] \longrightarrow [/tex] x(x + 7) + 7(x + 7) = 11
[tex] \longrightarrow [/tex] (x + 7)(x + 7) = 11
[tex] \longrightarrow [/tex] (x + 7)² = 11
Take the square root of both sides:
[tex] \longrightarrow [/tex] [tex] \sf \sqrt{{(x + 7)}^{2}} = \pm \sqrt{11} [/tex]
[tex] \longrightarrow [/tex] [tex] \sf x + 7 = \pm \sqrt{11} [/tex]
Subtract 7 from both sides:
[tex] \longrightarrow [/tex] [tex] \sf x = - 7 \pm \sqrt{11} [/tex]