Please show your work for this question

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
[tex]4 \times {9}^{2x} = 42[/tex]
Divide sides by 4
[tex] \frac{4 \times {9}^{2x} }{4} = \frac{42}{4} \\ [/tex]
[tex] {9}^{2x} = \frac{2 \times 21}{2 \times 2} \\ [/tex]
[tex] {9}^{2x} = \frac{21}{2} \\ [/tex]
[tex]( { {9}^{2} })^{x} = \frac{21}{2} \\ [/tex]
[tex]x = log_{ {9}^{2} }( \frac{21}{2} ) \\ [/tex]
[tex]x = \frac{1}{2} log_{9}( \frac{21}{2} ) \\ [/tex]
[tex]x = \frac{1}{2} log_{ {3}^{2} }( \frac{21}{2} ) \\ [/tex]
[tex]x = \frac{1}{2 \times 2} log_{3}( \frac{21}{2} ) \\ [/tex]
[tex]x = \frac{1}{4} log_{3}( \frac{21}{2} ) \\ [/tex]
[tex]x = \frac{1}{4} ( \: \: log_{3}(21) - log_{3}(2) \: \: ) \\ [/tex]
[tex]x = \frac{1}{4} ( \: \: log_{3}(3 \times 7) - log_{3}(2) \: \: ) \\ [/tex]
[tex]x = \frac{1}{4} ( \: \: log_{3}(3) + log_{3}(7) - log_{3}(2) \: \: ) \\ [/tex]
[tex]x = \frac{1}{4} ( \: \: 1 + log_{3}(7) - log_{3}(2) \: \: ) \\ [/tex]
And we're done...
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️