Respuesta :
Answer:
Step-by-step explanation:
Given that:
The differential equation; [tex](x^2-4)^2y'' + (x + 2)y' + 7y = 0[/tex]
The above equation can be better expressed as:
[tex]y'' + \dfrac{(x+2)}{(x^2-4)^2} \ y'+ \dfrac{7}{(x^2- 4)^2} \ y=0[/tex]
The pattern of the normalized differential equation can be represented as:
y'' + p(x)y' + q(x) y = 0
This implies that:
[tex]p(x) = \dfrac{(x+2)}{(x^2-4)^2} \[/tex]
[tex]p(x) = \dfrac{(x+2)}{(x+2)^2 (x-2)^2} \[/tex]
[tex]p(x) = \dfrac{1}{(x+2)(x-2)^2}[/tex]
Also;
[tex]q(x) = \dfrac{7}{(x^2-4)^2}[/tex]
[tex]q(x) = \dfrac{7}{(x+2)^2(x-2)^2}[/tex]
From p(x) and q(x); we will realize that the zeroes of (x+2)(x-2)² = ±2
When x = - 2
[tex]\lim \limits_{x \to-2} (x+ 2) p(x) = \lim \limits_{x \to2} (x+ 2) \dfrac{1}{(x+2)(x-2)^2}[/tex]
[tex]\implies \lim \limits_{x \to2} \dfrac{1}{(x-2)^2}[/tex]
[tex]\implies \dfrac{1}{16}[/tex]
[tex]\lim \limits_{x \to-2} (x+ 2)^2 q(x) = \lim \limits_{x \to2} (x+ 2)^2 \dfrac{7}{(x+2)^2(x-2)^2}[/tex]
[tex]\implies \lim \limits_{x \to2} \dfrac{7}{(x-2)^2}[/tex]
[tex]\implies \dfrac{7}{16}[/tex]
Hence, one (1) of them is non-analytical at x = 2.
Thus, x = 2 is an irregular singular point.