Respuesta :

Answer:

[tex]y = 4^x[/tex]

Step-by-step explanation:

Given

[tex](2,16)[/tex]

[tex](5,1,024)[/tex]

Required

Determine the exponential function [tex]y = a.b^x[/tex]

In [tex](2,16)[/tex]

[tex]x=2[/tex] and [tex]y = 16[/tex]

Substitute these values in [tex]y = a.b^x[/tex]

[tex]16 = a.b^2[/tex] --- (1)

In [tex](5,1,024)[/tex]

[tex]x = 5[/tex] and [tex]y = 1024[/tex]

Substitute these values in [tex]y = a.b^x[/tex]

[tex]1024 = a.b^5[/tex] --- (2)

Divide (2) by (1)

[tex]\frac{1024}{16} = \frac{a.b^5}{a.b^2}[/tex]

[tex]\frac{1024}{16} = \frac{b^5}{b^2}[/tex]

[tex]64 = \frac{b^5}{b^2}[/tex]

Apply second law of indices

[tex]64 = b^{5-2[/tex]

[tex]64 = b^3[/tex]

Express 64 as an exponent of 3

[tex]4^3 = b^3[/tex]

[tex]4 = b[/tex]

[tex]b = 4[/tex]

Substitute 4 for b in (1)

[tex]16 = a.b^2[/tex]

[tex]16 = a * 4^2[/tex]

[tex]16 = a * 16[/tex]

[tex]16 = 16a[/tex]

Solve for a

[tex]a=\frac{16}{16}[/tex]

[tex]a = 1[/tex]

Substitute 1 for a and 4 for b in [tex]y = a.b^x[/tex]

[tex]y = 1 * 4^x[/tex]

[tex]y = 4^x[/tex]

The exponential function is given by y = 100(0.4)ˣ

An exponential function is in the form:

y = abˣ

where y, x are variables, a is the initial value of y and b is the factor.

At point (2, 16):

16 = ab²      (1)

At point (5, 1.024):

1.024 = ab⁵      (2)

Dividing equation 2 by equation 1:

b³ = 0.064

b = 0.4

16 = a(0.4)²

a = 100

The exponential function is given by: y = 100(0.4)ˣ

Find out more at: https://brainly.com/question/12490064

ACCESS MORE
EDU ACCESS