Respuesta :
Answer:
[tex]y = 4^x[/tex]
Step-by-step explanation:
Given
[tex](2,16)[/tex]
[tex](5,1,024)[/tex]
Required
Determine the exponential function [tex]y = a.b^x[/tex]
In [tex](2,16)[/tex]
[tex]x=2[/tex] and [tex]y = 16[/tex]
Substitute these values in [tex]y = a.b^x[/tex]
[tex]16 = a.b^2[/tex] --- (1)
In [tex](5,1,024)[/tex]
[tex]x = 5[/tex] and [tex]y = 1024[/tex]
Substitute these values in [tex]y = a.b^x[/tex]
[tex]1024 = a.b^5[/tex] --- (2)
Divide (2) by (1)
[tex]\frac{1024}{16} = \frac{a.b^5}{a.b^2}[/tex]
[tex]\frac{1024}{16} = \frac{b^5}{b^2}[/tex]
[tex]64 = \frac{b^5}{b^2}[/tex]
Apply second law of indices
[tex]64 = b^{5-2[/tex]
[tex]64 = b^3[/tex]
Express 64 as an exponent of 3
[tex]4^3 = b^3[/tex]
[tex]4 = b[/tex]
[tex]b = 4[/tex]
Substitute 4 for b in (1)
[tex]16 = a.b^2[/tex]
[tex]16 = a * 4^2[/tex]
[tex]16 = a * 16[/tex]
[tex]16 = 16a[/tex]
Solve for a
[tex]a=\frac{16}{16}[/tex]
[tex]a = 1[/tex]
Substitute 1 for a and 4 for b in [tex]y = a.b^x[/tex]
[tex]y = 1 * 4^x[/tex]
[tex]y = 4^x[/tex]
The exponential function is given by y = 100(0.4)ˣ
An exponential function is in the form:
y = abˣ
where y, x are variables, a is the initial value of y and b is the factor.
At point (2, 16):
16 = ab² (1)
At point (5, 1.024):
1.024 = ab⁵ (2)
Dividing equation 2 by equation 1:
b³ = 0.064
b = 0.4
16 = a(0.4)²
a = 100
The exponential function is given by: y = 100(0.4)ˣ
Find out more at: https://brainly.com/question/12490064