Answer:
the range value of x which satisfy inequality [tex](x + 2)^2 > 2x + 7[/tex] is [tex]\mathbf{x>1 \ or \ x<-3}[/tex]
Step-by-step explanation:
We need to find the range value of x which satisfy inequality [tex](x + 2)^2 > 2x + 7[/tex]
Solving:
[tex](x + 2)^2 > 2x + 7[/tex]
Using formula: [tex](a+b)^2=a^2+2ab+b^2[/tex]
[tex]x^2+4x+4>2x+7\\x^2+4x+4-2x-7>0\\x^2+4x-2x+4-7>0\\x^2+2x-3>0[/tex]
Now factoring the term: [tex]x^2+2x-3>0[/tex]
Breaking the middle term: 2x= 3x-x
[tex]x^2+2x-3>0\\x^2+3x-x-3>0\\x(x+3)-1(x+3)>0\\(x-1)(x+3)>0\\x-1>0 \ or \ x+3>0\\x>1 \ or \ x<-3[/tex]
So, the range value of x which satisfy inequality [tex](x + 2)^2 > 2x + 7[/tex] is [tex]\mathbf{x>1 \ or \ x<-3}[/tex]