Answer:
The value of (gof)(9)=54
Step-by-step explanation:
We are given:
[tex]f(x) = -2x + 14\\g(x) = 2x^2 - 6x - 2[/tex]
We need to find (gof)(9).
To find (gof)(9) first we will find g(f(x)) and then put x=9
Finding g(f(x))
By putting value of f(x) into g(x) i.e
[tex]g(f(x))=2(-2x+14)^2-6(-2x+14)-2[/tex]
Now putting x=9
[tex]g(f(9))=2(-2(9)+14)^2-6(-2(9)+14)-2\\g(f(9))=2(-18+14)^2-6(-18+14)-2\\g(f(9))=2(-4)^2-6(-4)-2\\g(f(9))=2(16)+24-2\\g(f(9))=32+24-2\\g(f(9))=54[/tex]
so, the value of (gof)(9)=54