Respuesta :
Answer:
x=−4+√22 or x=−4−√22
Step-by-step explanation:
Substitute all values in the quadratic formula.
Solve.
Answer:
[tex]\boxed {\sf x= {{ - 4\pm \sqrt{22} }}}[/tex]
Step-by-step explanation:
The quadratic equation is used to find the roots of a quadratic. The formula is:
[tex]x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}[/tex]
when [tex]{ax^2 + bx + c = 0}[/tex]
We are given the quadratic: [tex]x^2+8x-6=0[/tex]
If we compare the given quadratic to the standard form of a quadratic, then:
[tex]a= 1\\b=8 \\c= -6[/tex]
Substitute the values into the formula.
[tex]x = \frac{{ - 8\pm \sqrt {8^2 - 4(1)(-6)} }}{{2(1)}}[/tex]
Solve inside the radical first.
Solve the exponent.
- 8²= 8*8= 64
[tex]x = \frac{{ - 8\pm \sqrt {64 - 4(1)(-6)} }}{{2(1)}}[/tex]
Multiply 4, 1, and -6.
- 4(1)(-6)= 4(-6)= -24
[tex]x = \frac{{ - 8\pm \sqrt {64 - -24}}}{{2(1)}}[/tex]
Add 64 and 24 (2 negative signs become a positive)
- 64- -24 64+24=88
[tex]x = \frac{{ - 8\pm \sqrt {88}}}{{2(1)}}[/tex]
Solve the denominator.
[tex]x = \frac{{ - 8\pm \sqrt {88}}}{{2}}[/tex]
The radical can be simplified. 88 is divisible by a perfect square: 4
[tex]x= \frac{{ - 8\pm \sqrt {4}\sqrt{22} }}{{2}}[/tex]
Take the square root of 4.
[tex]x= \frac{{ - 8\pm 2\sqrt{22} }}{{2}}[/tex]
Divide by 2.
[tex]x= {{ - 4\pm \sqrt{22} }}[/tex]
The roots are: x=0.690416 and x=−8.69042
Otras preguntas
