Respuesta :

Answer:

x=−4+√22 or x=−4−√22

Step-by-step explanation:

Substitute all values in the quadratic formula.

Solve.

Answer:

[tex]\boxed {\sf x= {{ - 4\pm \sqrt{22} }}}[/tex]

Step-by-step explanation:

The quadratic equation is used to find the roots of a quadratic. The formula is:

[tex]x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}[/tex]

when  [tex]{ax^2 + bx + c = 0}[/tex]

We are given the quadratic: [tex]x^2+8x-6=0[/tex]

If we compare the given quadratic to the standard form of a quadratic, then:

[tex]a= 1\\b=8 \\c= -6[/tex]

Substitute the values into the formula.

[tex]x = \frac{{ - 8\pm \sqrt {8^2 - 4(1)(-6)} }}{{2(1)}}[/tex]

Solve inside the radical first.

Solve the exponent.

  • 8²= 8*8= 64

[tex]x = \frac{{ - 8\pm \sqrt {64 - 4(1)(-6)} }}{{2(1)}}[/tex]

Multiply 4, 1, and -6.

  • 4(1)(-6)= 4(-6)= -24

[tex]x = \frac{{ - 8\pm \sqrt {64 - -24}}}{{2(1)}}[/tex]

Add 64 and 24 (2 negative signs become a positive)

  • 64- -24 64+24=88

[tex]x = \frac{{ - 8\pm \sqrt {88}}}{{2(1)}}[/tex]

Solve the denominator.

[tex]x = \frac{{ - 8\pm \sqrt {88}}}{{2}}[/tex]

The radical can be simplified. 88 is divisible by a perfect square: 4

[tex]x= \frac{{ - 8\pm \sqrt {4}\sqrt{22} }}{{2}}[/tex]

Take the square root of 4.

[tex]x= \frac{{ - 8\pm 2\sqrt{22} }}{{2}}[/tex]

Divide by 2.

[tex]x= {{ - 4\pm \sqrt{22} }}[/tex]

The roots are: x=0.690416  and x=−8.69042

RELAXING NOICE
Relax